
New Compression Schemes for

Natural Number Sequences

Sapir Asraf1, Shmuel T. Klein2, and Dana Shapira1

1 Dept. of Computer Science, Ariel University, Ariel 40700, Israel
asrafsapir@gmail.com, shapird@g.ariel.ac.il

2 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

Abstract. Elias and Fano independently proposed a quasi-succinct representation for
monotonic integer sequences. In case the standard deviation is high, we suggest using
the well known Cγ code instead of the Unary code used by their solution. In case
the integers are similar, not necessarily forming a monotonic sequence, we propose
to apply the Haar transform as a preprocessing stage, to achieve additional savings.
Experimental results support the additional savings carried out by using our method.

Keywords: lossless compression, universal codes, the Haar transform

1 Introduction

Fixed length codes, such as the American Standard Code for Information Interchange

ASCII code, are the most popular method to store data, as they provide simplicity,
direct access and the possibility for fast retrieval. When compression performance
is of interest, variable length codes are usually more effective. Obviously, the codes
should be Uniquely Decipherable (UD), meaning that there is no ambiguous decoding.
In case no codeword is a prefix of any of the other codewords, the code is often called
a Prefix-free Code, and such a code is also UD. The restriction to prefix-free codes
does not hurt the compression performance. Famous prefix-free variable length codes
are, for instance, Huffman [12], Elias [5] and Fibonacci [7] codes.

Elias [5] proposed mainly two fixed , universal, prefix codeword sets, named Cγ

and Cδ, in which any integer x is represented by a binary codeword composed of two
parts. The first part listing the number of bits in the binary representation of x, and
the second storing the standard binary representation itself without its leading 1-bit.
While the first part is encoded by Cγ using the Unary encoding, Cδ uses Cγ. There is
no difference between Cγ and Cδ in the second part. The expected codeword lengths
are within twice the optimal average codeword length for the same underlying source
for Cγ, and only a log log factor away from optimal for Cδ. More precisely, Cγ requires
2⌊log x⌋ + 1 and Cδ necessitates ⌊log x⌋ + 1 + 2⌊log(⌊log x⌋ + 1)⌋ bits to encode the
number x.

A classical way to encode a monotonic set of integers is differential encoding, also
called gap encoding. In this method, instead of encoding the original set 0 ≤ x1 ≤ x2 ≤
· · · ≤ xn ≤ U , the set of differences is encoded. If the sequence of differences is encoded
by Cδ, then the number of bits used is no more than n log U

n
+ 2n log log U

n
+ O(n),

which is close to the zero-order entropy of a bit-vector of size U with n 1-bits [14].
There are quite a few motivations for the interest in monotonic sequence, an

Inverted Index is one of them. This is a powerful data structure commonly used
in Information Retrieval to enhance the processing time of search engines. Given

Sapir Asraf, Shmuel T. Klein, Dana Shapira: New Compression Schemes for Natural Number Sequences, pp. 1–10.

Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

2 Proceedings of the Prague Stringology Conference 2020

a collection of documents, the inverted index is the list of documents where each
element of the collection occurs in, possibly including the frequency as well as the
exact positions of the element within each document. For a text T , the inverted index
stores for each element w with nw occurrences, the positions x1 < x2 < · · · < xnw

within T where w occurs. As this list is usually given in order, the resulting sequence
of integers is increasing.

Increasing sequences can also be found in Compressed Suffix Arrays. A suffix
array (SA) for T$, where T is a string of length n over Σ and $ /∈ Σ, is an array
SA[0 : n−1] of the indices of the suffixes of T$, stored in lexicographical order. Grossi
and Vitter [10] improve the space requirements of a suffix array by decomposing it
based on the neighbor function Φ. It has been shown that the values of Φ at consecutive
positions referring to suffixes that start with the same symbol must be increasing. The
implementation of CSA used in [1,13] applies differential encoding on the neighbor
function. Improved compression results were proposed by Gog et al. [8] who suggest
using the Elias-Fano encoding for storing the increasing Φ values of the CSA.

Our paper is constructed as follows. Section 2 recalls the details of Elias-Fano
codes, and suggests a variant that uses Cγ rather than the Unary code used by Elias-
Fano. We show that the original Elias-Fano is suitable for homogeneous series, while
the new variant is effective for series with higher standard deviation. Section 3 then
suggests the Haar transform as a preprocessing stage in order to convert homogeneous
numbers to a series which is suitable for the new Cγ variant. Experimental results
presented in Section 4 then support the savings of the proposed method.

2 Quasi-succinct representation for monotone sequences

Gap encoding can be used in order to compress inverted indices. Instead of encoding
the non-decreasing list of integers 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, directly pointing to the
ordered set of documents, the differences d1 = x1, d2 = x2 − x1, . . . , dn = xn − xn−1

are encoded, usually by universal codes such as Elias, Golomb [9] or Rice codes.
Elias [4] and Fano [6] independently proposed an efficient encoding method for

representing a non-decreasing sequence X of positive integers

X = {0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ U},

where U is a given upper bound on xn, possibly equal to xn.
The sequence X is represented by two separate bit-vectors L(ℓ) and U(ℓ), for

storing the ℓ lower bits, and the differences between successive values of the remaining
upper bits of each xi, respectively. More precisely, the ℓ least significant bits of each
xi ∈ X , which are xi mod 2ℓ, are stored sequentially in L(ℓ) in the same order as they
appear in X . The value of the binary representation of the remaining bits of each
xi ∈ X , that is, the values yi = ⌊

xi

2ℓ
⌋ are then considered, and the differences between

adjacent values∆(i) = yi−yi−1, 1 ≤ i ≤ n, are computed, setting y0 = 0. U(ℓ)-Unary
stores these differences ∆(i) in the same order as in X in a Unary encoding, that is,
representing the integers 1, 2, 3, . . . , i respectively by 1, 01, 001, . . . , 0i−11. Elias-Fano’s
method defines ℓ to be equal to max{0, ⌊log(U

n
)⌋}. A similar encoding of the indices

of 1-bits in a sparse bit-vector, in which the sequence U(ℓ) is replaced by a bit-vector,
is described in [2].

Table 1 displays the representation of the Elias-Fano code applied on the mono-
tonic sequence example 2, 3, 10, 16, and 52. The first and second lines of Table 1

S.Asraf, S. T.Klein, D. Shapira: New Compression Schemes for Natural Number Sequences 3

give the sequence X and their binary representation B(xi). According to Elias-Fano,
ℓ = max{0, ⌊log(U

n
)⌋} = 3 for our example, and the third line presents the lower

bits vector L for ℓ = 3. The next block of four lines are the stages for constructing
U -Unary for this example, given at the end of this block. The following two lines,
headed by B

(
⌊xi

2ℓ
⌋
)
and ⌊xi

2ℓ
⌋, are the remaining bits in each xi and their correspond-

ing values after their 3 lower bits have been removed. The line headed by ∆(i) is the
differences between adjacent values of the previous line. Elias-Fano uses 26 bits in
total. The last five lines of Table 1 are explained below.

x1 x2 x3 x4 x5

X 2 3 10 16 52

B(xi) 10 11 1010 10000 110100

L(3) 010 011 010 000 100

B
(
⌊xi

2ℓ
⌋
)

0 0 1 10 110

⌊xi

2ℓ
⌋ 0 0 1 2 6

∆(i) 0 0 1 1 4

U(3)-Unary 1 1 01 01 00001

U(3)-Cγ 1 1 010 010 00101

L(2) 10 11 10 00 00

B
(
⌊xi

2ℓ
⌋
)

0 0 10 100 1101

⌊xi

2ℓ
⌋ 0 0 2 4 13

∆(i) 0 0 2 2 9

U(2)-Cγ 1 1 011 011 0001010

Table 1. Quasi Succinct Encoding [4] for the sequence 2, 3, 10, 16 and 52

Exactly ℓ ·n bits are used for storing the lower bits vector L(ℓ). Next, we compute
the number of bits used by the upper bits vector U(ℓ)-Unary. The Unary code
records the values yi − yi−1 = xi

2ℓ
− xi−1

2ℓ
. If this difference is c, then xi is larger than

xi−1 by at least c · 2ℓ. The total differences can obviously not be larger than xn

2ℓ
, the

latter being bounded in case the definition for ℓ is used, explained as follows.

⌊xn
2ℓ

⌋

≤
⌊U

2ℓ

⌋

≤
U

2ℓ
=

U

2max{0,⌊log(U/n)⌋}

If there exists an integer k so that U
n

= 2k then U
2max{0,⌊log(U/n)⌋} = n. Otherwise,

⌊log(U/n)⌋ = ⌈log(U/n)⌉ − 1, and U
2max{0,⌊log(U/n)⌋} ≤ 2n.

Each Unary codeword requires a single 1-bit, and each 0-bit within the Unary
codeword represents an increase by 2ℓ. At most n 1s and 2n 0s are written in the Unary
representation, that is, 3 bits per integer xi. This concludes that the representation of
Elias-Fano uses at most 2+ ⌈log(U

n
)⌉ bits per element. Elias [4] proves that the Elias-

Fano representation is close to optimal as the information theoretical lower bound for

4 Proceedings of the Prague Stringology Conference 2020

a monotonic sequence of n integers is

⌈

log

(
U + n

n

)⌉

≈ n log
(U + n

n

)

.

Although, Elias-Fano’s encoding is considered quasi-succinct, that is, close to the
optimal representation, which is the information theoretical bound [16], there is still
place for improvements by replacing the Unary code by Cγ, as the former code is
costly for large integers. The Unary encoding uses i+ 1 bits to encode the integer i,
i ≥ 0, i.e., the codeword for the integer i is 0i1. The ith codeword for Cγ refers to
the binary representation of i+1, denoted by B(i+1), as the value zero may also be
encoded. The number of bits in B(i + 1) is encoded using its Unary form, followed
by B(i + 1) after the preceding 1-bit has been removed. The first several codewords
of Unary and Cγ are

0 1 2 3 4 5 6 7 8
U 1 01 001 0001 00001 000001 0000001 00000001 000000001

Cγ 1 01 0 01 1 001 00 001 01 001 10 001 11 0001 000 0001 001

where blanks are inserted between the unary and the binary parts for readability. Only
for the codewords corresponding to values 1 and 3 are Elias’ Cγ codewords longer than
those of the Unary code; for all other values, Cγ is preferable to the Unary code. We
therefore propose a different variant of the Elias-Fano encoding, which is especially
useful for non-uniform monotonic sequences having large standard deviation.

The sequence X is still represented by two bit vectors L(i) and U(i) for storing,
respectively, the i lower bits and the differences between successive values of the
remaining upper bits of each xi, but this time we shall not fix the number of bits i
in advance and rather let it vary from 0 to ℓ = max{0, ⌊log(U

n
)⌋}. Using the example

of Table 1, the line headed U(3)-Cγ refers to the case of i = 3 and presents the
corresponding U(3) for Cγ. The lower bits vector L(3) remains the same, for a total
of 28 bits, instead of 26 used by the original Elias-Fano. However, the representation
for i = 2 uses only 25 bits, shown by the bottom block of Table 1. The lower bits
vector L(2) uses 10 bits, and U(2)-Cγ uses additional 15 bits, less than the 26 bits
used by Elias-Fano.

ℓ 0 1 2 3 4 5 6

Elias-Fano-Cγ 35 34 31 36 37 38 41

Table 2. Elias-Fano-Cγ for the sequence 2, 3, 10, 16, 520 where the original Elias-Fano uses 43 bits

The introduction of the Elias-Fano-Cγ variant was, however, not suggested for
the savings of merely a single bit, and is rather suitable for sequences with larger
standard deviation. Consider the same example in which the last element has been
changed to 520. The standard deviation grows from 18.41 for the first one, to 204.96
for this new example. Elias-Fano-Unary requires 43 bits for the updated sequence,
while Elias-Fano-Cγ only needs 31 bits, which is attained for ℓ = 2. Table 2 gives the
total number of bits required for encoding the sequence 2, 3, 10, 16, 520 by the new
version, as a function of ℓ. It is interesting to see that the storage for all values of ℓ
needs less space than the original Elias-Fano coding.

S.Asraf, S. T.Klein, D. Shapira: New Compression Schemes for Natural Number Sequences 5

We thus see that there is an advantage for using Cγ for sequences with high vari-
ability. Obviously, for general data, the logarithmic encoding of Cγ will be preferable
to the linear encoding of Unary, but for very uniform data, the differences encoded
by U in the Elias-Fano scheme will tend to consist mainly of very small integers, for
which the Unary variant is not so bad. In order to improve also the compression of
more homogeneous integer sets, we apply an idea used repeatedly in other data com-
pression applications, namely that of using a reversible transformation of the original
input to produce an equivalent sequence that is more compressible. This has been
used by applying the Burrows-Wheeler transform (BWT) for the compression of tex-
tual and other data [3], or the discrete cosine transform in lossy image compression
by JPEG [15]. In our case, we aim at causing a set of integers to be less homogeneous.
It turns out that the existence of an extreme element in a sequence is typical for the
output of the Haar transform [11], suggested as a preprocessing stage in the next
section.

3 The Haar Transform

The Haar wavelet transform, is a simple discrete transform, used in practical encoding
applications such as the compression of digitized sound and images. Here it is applied
for lossless compression of integer sequences. The Haar transform uses the basic scale
function φ(t), and the basic wavelet function ψ(t) defined as follows.

φ(t) =

{
1, 0 ≤ t < 1
0, otherwise.

ψ(t) =

{
1, 0 ≤ t < 0.5
−1, 0.5 ≤ t < 1.

A target function f(t) is approximated by an infinite linear combination of φ(t− k)
and ψ(2jt − k), where the parameter k assumes all possible, positive, negative and
zero, integer values:

f(t) =
∞∑

k=−∞

ckφ(t− k) +
∞∑

k=−∞

∞∑

j=0

dj,kψ(2
jt− k),

where ck and dj,k are constants. The function is transformed to a low resolution
average φ(t) and the high resolution detail ψ(t). In this research we are interested in
a particular non-normalized Haar transform, and refer to its matrix representation.

The Haar transform is related to a matrix of order 2k × 2k for k ≥ 1. The non-

normalized Haar matrix H2 of order 2× 2 is H2 =
1
2

(
1 1
1 −1

)

. The Haar matrix H2k

of order 2k × 2k is defined recursively by H2k =

(
H2k−1 ⊗ (1, 1)
I2k−1 ⊗ (1,−1)

)

, where ⊗ is the

Kronecker product defined for an n×m matrix A and a t×r matrix B as the nt×mr
matrix A⊗ B obtained by:

if A =

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

 then A⊗B =

a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

 .

6 Proceedings of the Prague Stringology Conference 2020

Given a sequence of 2k values a1, a2, . . . , a2k , the Haar transform computes, for
each pair of values a2i−1 and a2i, i = 1, . . . , 2k−1, the quantities

avg(i) =
a2i−1 + a2i

2
and ∆(i) =

a2i−1 − a2i
2

.

The resulting sequence is composed of the averages avg(1), avg(2), . . . , avg(2k−1), fol-
lowed by the half-differences, ∆(1), ∆(2), . . . , ∆(2k−1), and it is of the same length
as the input sequence. The 2k−1 averages are recursively transformed into 2k−2 new
averages followed by 2k−2 half-differences, and so on until only a single element re-
mains. The produced single value followed by the 2j−1 half-differences obtained from
all stages, j = 2, . . . k, are concatenated to form the final transformed elements. Note
that this single value, together with the sequences of half-differences, is sufficient to
reconstruct the original sequence, so the Haar transform is reversible.

As an example consider the sequence X = {1840, 1680, 1632, 1504, 1536, 1472,
1360, 1328}. The Haar transform applied on X is presented in Figure 1 resulting in
the non-increasing sequence H(X) = {1544, 120, 96, 80, 80, 64, 32, 16}. The original
series is given on the first line. The partition into pairs is depicted by curly braces,
and their average is presented on the following line. The elements contributed to the
resulting Haar vector, are shown in gray. The last line is the Haar transform outcome.

Algorithm 1: Haar-Cγ

Haar-Cγ(x1, . . . , x2k)

1 (h1, . . . , h2k)←Haar(x1, . . . , x2k)
2 U ← h1

3 ℓ← max{0, ⌊log(U
2k
)⌋}

4 Encode (h2k , . . . , h1) using Elias-Fano-Cγ(i) for 0 ≤ i ≤ ℓ

choosing i that results with minimum number of bits

1 2 3 4 5 6 7 8

1840 1680 1632 1504 1536 1472 1360 1328
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1760 1568 1504 1344 80 64 32 16
︸ ︷︷ ︸ ︸ ︷︷ ︸

1664 1424 96 80

︸ ︷︷ ︸

1544 120

Haar 1544 120 96 80 80 64 32 16

Figure 1. The Haar Transform for X = {1840, 1680, 1632, 1504, 1536, 1472, 1360, 1328}

The resulting output of the Haar transform of Figure 1 is quite typical: a dominant
first coefficient followed by others that are smaller by orders of magnitude, and most

S.Asraf, S. T.Klein, D. Shapira: New Compression Schemes for Natural Number Sequences 7

importantly, with higher standard deviation than the original series. When the Haar
transform is applied to an image, the averages of the disjoint successive pairs are
commonly named the coarse resolution of the input image, while the differences of the
pairs are called the detail coefficients. The Haar transform is effective for correlated
pixels, as the coarse representation will resemble the original pixels, while the detail
coefficients will be small. The small values tend to be more compressible than the
original ones, and several compression techniques can be applied such as Run-Length
Encoding, Move-To-Front and Huffman encoding for lossless compression, possibly
adding quantization for lossy compression. For more details on the Haar transform
we refer the reader to the book of Salomon [15].

In this research we suggest to apply Algorithm 1 in case the input integer series
consists of similar numbers. Algorithm 1, which assumes that the input size is a power
of 2, 2k, starts by applying the Haar transform on the input sequence (x1, . . . , x2k) on
line 1 and obtains the output sequence (h1, . . . , h2k) of the same length as a result. It
then computes ℓ on line 3 as defined by Elias-Fano, and encodes the reverse sequence
(h2k , . . . , h1), to get an increasing sequence, with Elias-Fano-Cγ(i), for i ranging from
0 to ℓ, choosing a value of i that results in the minimum number of bits.

Continuing our running example of Figure 1, we applied Algorithm 1 on the given
sequence. The encoding of Haar-Cγ results in 62 bits, which was attained for ℓ = 3.
For comparison, Elias-Fano-Unary and Elias-Fano-Cγ on the sorted sequence of the
original series gave 78 bits for ℓ = 7 and 76 bits for ℓ = 6, respectively. We also applied
Elias-Fano-Unary on the resulting Haar vector, that, as noted above, is sorted for
this example, which attained 76 bits for ℓ = 7.

3.1 Encoding the Haar output using two blocks

In order to apply Algorithm 1, the Haar transform must result in a monotonic decreas-
ing sequence, which is not necessarily the case. Algorithm 2 suggests the encoding by
Elias-Fano-Cγ with only two different values for U(i)-Cγ. That is, the sequence is
partitioned into two buckets: the first containing only the first element, and all the
others belonging to the second one. The corresponding values of U(i)-Cγ are therefore
all 0, so they can be omitted.

Interestingly, this encoding does not require a monotonic series as all coordinates,
except the first, are written explicitly in the lower bits L array.

Algorithm 2: Bi-Haar-Cγ

Bi-Haar-Cγ(x1, . . . , x2k)

1 (h1, h2, . . . , h2k)←Haar(x1, . . . , x2k)
2 m← h2

3 ℓ← ⌊logm⌋+ 1
4 Encode (h2k , . . . , h1) using Elias-Fano-Cγ(ℓ), without encoding zeros in U

Applying Algorithm 2 on our running example, m = 120, and the coefficients are
encoded by ⌊logm⌋ + 1 = 7 bits, for a total of 56 for L(7). The upper bits vector
U(7)-Cγ needs only to express the coarse coefficient, as the seven detail coefficients
are with upper bit 0, which can be omitted for this method. In our example, the
coefficient ⌊1544

27
⌋ = 12, which is encoded by 13 bits in a Unary code, and by only 7

bits in Cγ, for a total of 69 and 63 bits, respectively.

8 Proceedings of the Prague Stringology Conference 2020

3.2 Ensuring that the Haar transform results in integers

The Haar transform repeatedly computes the averages of number pairs in the input
series, which may, obviously, produce non-integer numbers. Since Elias-Fano methods
are restricted to integers, Algorithm 3 presents a variant of the Haar transform that
makes sure the outcome consists only of integers. This is done by prepending a bit bi,
1 ≤ i ≤ 2k to each of the differences, indicating whether the corresponding average
is exact or has been rounded. In fact, bi is a parity bit as used in error correcting
codes: in case the corresponding sum is even, bi is set to 0, and if it is odd, bi = 1.
Concatenation is denoted by ·. The additional bits enables the reversibility of the
Haar transform. The algorithm gets as input a sequence of n = 2k integers for some
k ≥ 1, and returns another sequence of n integers, the first being the (rounded)
overall average, followed by n− 1 differences.

Algorithm 3: Integer-Haar-Cγ

Integer-Haar-Cγ(x1, . . . , x2k)

1 for i← 1 to 2k−1 do

2 b2k−1+i ← (x2i − x2i−1) mod 2

3 h2k−1+i ←
⌊
1

2
(x2i − x2i−1)

⌋

4 zi ←
⌊
1

2
(x2i + x2i−1)

⌋

5 if k = 1 then

6 return (z1, b2 · h2)

else

7 (y1, . . . , y2k−1)←Haar(z1, . . . , z2k−1)
8 return (y1, . . . , y2k−1 , b2k−1+1 · h2k−1+1, . . . , b2k · h2k)

1 2 3 4 5 6 7 8

115 106 102 94 96 92 85 84
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

110 98 94 84 (1)4 (0)4 (0)2 (1)0
︸ ︷︷ ︸ ︸ ︷︷ ︸

104 89 (0)6 (0)5

︸ ︷︷ ︸

96 (1)7

Haar 96 (1)7 (0)6 (0)5 (1)4 (0)4 (0)2 (1)0

Figure 2. Haar Transform with two buckets

As example, consider the following sequence of integers X = 115, 106, 102, 94,
96, 92, 85, 84, depicted in Figure 2. Each difference d on the right hand side is
now preceded by a parity bit b in parentheses, which is set to 1 if and only if the
corresponding average value a on the left hand side has been rounded, that is, the

S.Asraf, S. T.Klein, D. Shapira: New Compression Schemes for Natural Number Sequences 9

sum of the two integers a′ and a′′ of the previous iteration, was odd, see the example
in red in Figure 2. The reversibility means that we can recover a′ and a′′ from a, d
and b. Indeed:

a′ = a+ d+ b and a′′ = a− d.

4 Experimental Results

In order to evaluate our proposed method, we considered randomly generated se-
quences of 256 elements. We defined U to be the largest element in the sequence
and generated the Elias-Fano-Cγ encoding for varying values of ℓ from 1 to 30. All
sequences presented a similar behavior, Figure 3 and Figure 4 depict the compression
results of a typical representative.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

ℓ

T
o
ta
l
B
it
s

Cγ

Unary

Figure 3. Elias-Fano-Unary vs. Elias-Fano-Cγ encoding for uniform random generated monotonic
sequence of 256 elements

The general case is shown in Figure 3. Elias-Fano-Unary gives the best result,
4104 bits. The best encoding for Elias-Fano-Cγ is only slightly larger, 4238 bits, for
ℓ = 14, and it deteriorates for other values of ℓ. To get examples of more biased input
sequences, the test was repeated again with randomly generated sequences, but to
each of which one extreme element has been adjoined, thereby simulating the series
handled by JPEG or after having applied the Haar transform. The corresponding
graph of a typical example appears in Figure 4. Elias-Fano-Unary stores the input
sequence using 6,144 bits with ℓ = 22, while many Elias-Fano-Cγ values were lower,
with a minimum achieved of 1,698 bits, for ℓ = 3.

References

1. E. Benza, S. T. Klein, and D. Shapira: Smaller compressed suffix arrays. The Computer
Journal, 2020.

2. A. Bookstein and S. T. Klein: Compression of correlated bit-vectors. Inf. Syst., 16(4) 1991,
pp. 387–400.

10 Proceedings of the Prague Stringology Conference 2020

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

ℓ

T
o
ta
l
B
it
s

Cγ

Unary

Figure 4. Elias-Fano-Unary vs. Elias-Fano-Cγ encoding for a random generated monotonic se-
quence of 256 elements, with an extreme element

3. M. Burrows and D. J. Wheeler: A block sorting lossless data compression algorithm, in
SRC Technical Report 124, Digital Equipment Corporation, Palo Alto, CA, 1994.

4. P. Elias: Efficient storage and retrieval by content and address of static files. J. ACM, 21(2)
1974, pp. 246–260.

5. P. Elias: Universal codeword sets and representations of the integers. IEEE Trans. Information
Theory, 21(2) 1975, pp. 194–203.

6. R. Fano: On the Number of Bits Required to Implement an Associative Memory, Computation
Structures Group Memo, MIT Project MAC Computer Structures Group, 1971.

7. A. S. Fraenkel and S. T. Klein: Robust universal complete codes for transmission and
compression. Discrete Applied Mathematics, 64 1996, pp. 31–55.

8. S. Gog, A. Moffat, and M. Petri: CSA++: fast pattern search for large alphabets, in Proc.
19th Workshop on Algorithm Engineering and Experiments, ALENEX 2017, Barcelona, Spain,
January 17-18, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2017,
pp. 73–82.

9. S. W. Golomb: Run-length encodings (corresp.). IEEE Trans. Inf. Theory, 12(3) 1966, pp. 399–
401.

10. R. Grossi and J. S. Vitter: Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. SIAM Journal on Computing, 35(2) 2005, pp. 378–407.

11. A. Haar: Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 69(3)
1910, pp. 331–371.

12. D. A. Huffman: A method for the construction of minimum-redundancy codes. Proceedings
of the IRE, 40(9) 1952, pp. 1098–1101.

13. H. Huo, L. Chen, J. S. Vitter, and Y. Nekrich: A practical implementation of compressed
suffix arrays with applications to self-indexing, in Proceeding of the Data Compression Confer-
ence, DCC 2014, Snowbird, UT, USA, 26–28 March, IEEE Computer Society, Los Alamitos,
CA, 2014, pp. 292–301.

14. G. Navarro: Compact Data Structures - A Practical Approach, Cambridge University Press,
Cambridge UK, 2016.

15. D. Salomon, G. Motta, and D. Bryant: Data Compression: The Complete Reference,
Molecular biology intelligence unit, Springer London, 2007.

16. S. Vigna: Quasi-succinct indices, in Sixth ACM International Conference on Web Search
and Data Mining, WSDM 2013, Rome, Italy, February 4-8, 2013, S. Leonardi, A. Panconesi,
P. Ferragina, and A. Gionis, eds., ACM, 2013, pp. 83–92.

