The Use and Usefulness of Fibonacci Codes

(Invited talk)

Shmuel T. Klein
Computer Science Department, Bar Ilan University, Israel
tomi@cs.biu.ac.il

1 Introduction

Contrary to our intuition led by the knowledge that the price for digital storage is constantly dropping, compression techniques are not becoming obsolete, and in fact research in data compression is flourishing as can be seen by the large number of papers published constantly on the topic. For instance, very large textual databases as those found in large Information Retrieval Systems, could contain hundreds of millions of words, which should be compressed by some method giving, in addition to good compression performance, also very fast decoding and the ability to search for the appearance of som

Classical Huffman cod poor compression, but wl an atomic element to be ϵ the best other compre are not necessarily ali process and the abilit therefore to pass to 2 integral number of 8 which is only a few 1 advantages of the eas

When searches in

su
co
ou
of
ov
aft
su
is
H

End-Tagged
The two las probabilities of the compressed text.
lividual characters, gives relatively , textual database is considered as uffword variant may compete with odewords of a binary Huffman code ich complicates both the decoding compressed file. The next step was hich every codeword consists of an cred in the compression efficiency, h alphabets, is compensated for by the
ould also be supported, Huffman codes noting by \mathcal{E} the encoding function, the n element x may appear in the compressed text $\mathcal{E}(T)$, withurrence of x in the text T, because the occurrence on codeword boundaries. This problem has been dency of Huffman codes to resynchronize quickly
istic and may prodi hereby reducing th odes have then bee s, c)-Dense codes (ords which do not c construction is simp of Huffman codes: and then assign th

We show here t obtained by Fibon, pression codes for robustness against
rs, can be st of com;e of their also studpresenting
integers in codes were in the book
ration system have been known long before the ollowing challenging quote appeared on page 211 ems and Arithmetic by N.R. Scott in 1985:
ber system (so-called by Knuth) ther remarkable and remarkably useless number svstem.

en taken as a s, not only a: ystems. They set of small in to devise a e review the al application the talk itself.

2 Fibonacci codes

Fibonacci numbers of order $m \geq 2$, denoted by $F_{i}^{(m)}$, are defined by the following recurrence relation:

$$
F_{n}^{(m)}=F_{n-1}^{(m)}+F_{n-2}^{(m)}+\cdots+F_{n-m}^{(m)} \quad \text { for } n>0
$$

and the boundary conditions

$$
F_{0}^{(m)}=1 \quad \text { and } \quad F_{n}^{(m)}=0 \quad \text { for }-m<n<0
$$

For fixed order m, the number $F_{n}^{(m)}$ can be represented as a linear combination of the nth powers of the roots of the corresponding polynomial $P(m)=x^{m}-x^{m-1}-$ $\cdots-x-1 . P(m)$ has only one real root that is larger than 1 , which we shall denote by $\phi_{(m)}$, the other $m-1$ roots are complex numbers with norm <1 (for $m=2$, the second root is also real and its absolute value is <1). Therefore, when representing $F_{n}^{(m)}$ as such a linear combination, the term with $\phi_{(m)}^{n}$ will be the dominant one, and the others will rapidly become negligible for increasing n.

For example, $m=2$ corresponds to the classical Fibonacci seauence and $\phi_{(2)}=$ $\frac{1+\sqrt{5}}{2}=1.6180$ is the well-known golden ratio. As a matt \quad onacci sequence can be obtained by $F_{n}^{(m)}=\left[a_{(m)} \phi_{(m)}^{n}\right]$, where \quad of the dominating term in the above mentioned linear combin at the value of the real number x is rounded to the closest inte st few elements of the Fibonacci sequences of order up to $6 . \quad$ eneral Term brings the values of $a_{(m)}$ and $\phi_{(m)}$. For larger $\quad{ }_{m}$ are usually quite close to integers.

The standard representation of an integer as a binar meration system whose basis elements are the powers of 2 . If B is represented by the k-bit string $b_{k-1} b_{k-2} \cdots b_{1} b_{0}$, then $B=\sum_{i=0}^{k-1} b_{i} 2^{i}$. But many other possible binary representations do exist, and those using the Fibonacci sequences as basis elements have some interesting properties. Let us first consider the standard Fibonacci numbers of order 2.

$F_{n}^{(m)}$	General Term	1	2	3	4	5	6	7	8	9	10	11	12	13
$m=2$	$0.7236(1.6180)^{n}$	1	2	3	5	8	13	21	34	55	89	144	233	377
$m=3$	$0.6184(1.8393)^{n}$	12	4	7	13	24	44	81	149	274	504	927	1705	
$m=4$	$0.5663(1.9275)^{n}$	12248	15	29	56	108	208	401	773	1490	2872			
$m=5$	$0.5379(1.9659)^{n}$	12248	16	31	61	120	236	464	912	1793	3525			
$m=6$	$0.5218(1.9836)^{n}$	12248	16	32	63	125	248	492	976	1936	3840			

Table 1. Fibonacci numbers of order $m=2,3,4,5,6$

Any integer B can be represented by a binary string of length $r, c_{r} c_{r-1} \cdots c_{2} c_{1}$, such that $B=\sum_{i=1}^{r} c_{i} F_{i}^{(2)}$. The representation will be unique if one uses the following procedure to produce it: given the integer B, find the largest Fibonacci number $F_{r}^{(2)}$ smaller or equal to B; then continue recursively with $B-F_{r}^{(2)}$. For example, $45=$ $34+8+3$, so its binary Fibonacci representation would be 10010100. As a result of this encoding procedure, there are never consecutive Fibonacci numbers in any of these sums, implying that in the corresponding binary representation, there are no adjacent 1s.

This property can be exploited to devise an infinite code whose set of codewords consists of the Fibonacci representations of the integers: to assure the code being uniquely decipherable (UD), each codeword is prefixed by a single 1-bit, which acts like a comma and permits to identify the boundaries between the codewords. The first few elements of this code would thus be $\left\{u_{1}, u_{2}, \ldots\right\}=\{\mathbf{1 1}, \mathbf{1 1 0}, \mathbf{1 1 0 0}, \mathbf{1 1 0 1}, \mathbf{1 1 0 0 0}$, $11001, \ldots\}$, where the separating 1 is put in boldface for visibility. A typical compressed text could be 1100111001101111101 , which is easily parsed as $u_{6} u_{3} u_{4} u_{1} u_{4}$. Though being UD, this is not a prefix code, so decoding may be somewhat more involved. In particular, the first codeword 11, which is the only one containing no zeros, complicates the decoding, because if a run of several such codewords appears, the correct decoding of the codeword preceding the run depends on the parity of the length of the run. Consider for example the encoded string 11011111110: a first attempt to parse it as $110|11| 11|11| 10=u_{2} u_{1} u_{1} u_{1} 10$ would fail, because the tail 10 is not a code we realize that the trying to decode the fifth codeword do 1101|11|11|110=

To overcome this set $\left\{v_{1}, v_{2}, \ldots\right\}=\{1$ all codewords are te any codeword, excep representation, with and that the parsing should rather be left to right rather than as usual, is advantageous for fast decod a larger sample of this set of codewords in the column headed F order of the elements is not lexicographic, e.g., 10011 precedes 01

The generalization to higher order seems at first sight straightf B can be uniquely represented by the string $d_{s} d_{s-1} \cdots d_{2} d_{1}$ such that $B=\sum_{i=1}^{s} d_{i} F_{i}^{(\omega)}$ using the iterative encoding procedure mentioned above. In this representation, there are no consecutive substrings of $m 1 \mathrm{~s}$. For example, the representations of the integers $10,11,12$ and 13 using $F^{(3)}$ are, respectively, 1011, 1100, 1101 and 10000. But simply adding now $m-1$ 1's as commas and reversing the strings does not yield a prefix
code for $m>2$, and in fact the code so obtained is not even UD. For example, for $m=3$, the above numbers would give the codewords $\left\{v_{10}, \ldots, v_{13}\right\}=\{110111$, 001111, 101111, 0000111\}, but the encoding of the fourth element of the sequence would be $v_{4}=00111$, which is a prefix of v_{11}. The string 0011110111 could be parsed both as $00111 \mid 10111=v_{4} v_{5}$ and as $001111 \mid 0111=v_{11} v_{2}$. The problem stems from the fact that for $m>2$, there can be more than one leading 1 in the representation of an integer, so adding $m-1$ s may give a string of up to $2 m-2$ consecutive 1 s . The fact that a string of $m 1$ s appears only as a suffix is thus only true for $m=2$. To turn the sequence into a prefix c o be amended as follows: the set Fibm will be defined as the ds of lengths $\geq m$, such that every codeword contains exactl consecutive 1s, and this occurrence i of these codes for $m \leq 4$ are giver equivalent to the one above based or $m>2$, only a subset of the corresp a connection between the codeword substring consisting of m eword. The first elements 2 , this last definition is h basis elements $F_{n}^{(2)}$; for en. There is nevertheless Fibonacci numbers: for $m \geq 2$, and $n \geq 0$, the code Fibm cd

$$
F_{n}^{(m)} \quad \text { codewords of length } n+m \text {. }
$$

index	Fib2	Fib3	Fib4
1			
2	11	111	1111
3	0011	0111	01111
4	1011	00111	001111
5	00011	000111	101111
6	10011	100111	0001111
7	01011	010111	0101111
8	000011	110111	1101111
9	100011	0000111	00001111
10	010011	1000111	10001111
11	001011	0100111	01001111
12	101011	1100111	11001111
13	0000011	0010111	00101111
14	1000011	1010111	10101111
15	0100011	0110111	01101111
16	0010011	00000111	11101111
17	1010011	10000111	000001111
18	0001011	01000111	100001111
19	1001011	11000111	010001111
20	0101011	00100111	110001111
21	00000011	10100111	001001111
22	10000011	01100111	101001111
23	01000011	00010111	01001111
24	00100011	10010111	111001111
25	10100011	01010111	000101111
26	00010011	11010111	100101111
27	10010011	00110111	010101111
28	01010011	10110111	110101111
29	00001011	000000111	001101111
30	10001011	100000111	101101111
31	01001011	010000111	011101111
32	00101011	110000111	0000001111
33	10101011	001000111	1000001111
34	000000011	101000111	0100001111
35	100000011	011000111	1100001111

Table 2. Fibonacci codes of order $m=2,3,4$

This is visualized in Table 2, where for each code, blocks of codewords of the same length are separated by horizontal lines. Within each such block of lengths $\geq m+2$ for Fibm, the prefixes of the codewords obtained by removing the terminating string of 1 s correspond to consecutive integers in the representation based on $F^{(m)}$. For decoding, the Fibonacci representation will thus be used to get the relative index within the block, to which the starting index of the given block has to be added.

Many of the features of Fibonacci codes are based on the following facts. To represent an integer n, more bits are needed in the Fibonacci than in the standard representation, since it is less dense. In fact, it can be shown that the number of bits needed for $m=2$ is $\left\lfloor\log _{\phi_{2}}(\sqrt{5} n)-1\right\rfloor \simeq 1.4404 \log _{2} n$. On the other hand, the probability of a 1 -bit drops from $\frac{1}{2}$ to only $\frac{1}{2}\left(1-\frac{1}{\sqrt{5}}\right)=0.276$, and thus the average number of 1 -bits is only $0.389 \log _{2} n$ instead of $0.5 \log _{2} n$. This can be exploited for many applications.

References

1. A. Apostolico and A. Fraenkel: Robust transmission of unbounded strings using Fibonacci representations. IEEE Trans. Inform. Theory, IT-33 1987, pp. 238-245.
2. N. R. Brisaboa, A. Fariña, G. Ladra, G. Navarro, and M. Esteller: (s, c)-dense coding: an optimized compression code for natural language text databases, in Proc. Symposium on String Processing and Information Retrieval SPIRE'03, vol. 2857, LNCS, 2010, pp. 122-136.
3. N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. R. Paramá: An efficient compression code for text databases, in Advances in Information Retrieval, 25th European Conference on IR Research, ECIR 2003, Pisa, Italy, April 14-16, 2003, Proceedings, 2003, pp. 468-481.
4. E. S. de Moura, G. Navarro, N. Ziviani, and R. A. Baeza-Yates: Fast and flexible word searching on compressed text. ACM Trans. Inf. Syst., 18(2) 2000, pp. 113-139.
5. A. S. Fraenkel and S. T. Klein: Robust universal complete codes for transmission and compression. Discrete Applied Mathematics, 64(1) 1996, pp. 31-55.
6. S. T. Klein: Should one always use repeated squaring for modular exponentiation? Inf. Process. Lett., 106(6) 2008, pp. 232-237.
7. S. T. Klein and M. K. Ben-Nissan: On the usefulness of Fibonacci compression codes. Comput. J., 53(6) 2010, pp. 701-716.
8. S. T. Klein and D. Shapira: Pattern matching in Huffman encoded texts. Inf. Process. Manage., 41(4) 2005, pp. 829-841.
9. S. T. Klein and D. Shapira: Boosting the compression of rewriting on flash memory, in Data Compression Conference, DCC 2014, Snowbird, UT, USA, 26-28 March, 2014, 2014, pp. 193-202.
10. D. A. Lelewer and D. S. Hirschberg: Data compression. ACM Comput. Surv., 19(3) 1987, pp. 261-296.
11. A. Moffat: Word-based text compression. Softw., Pract. Exper., 19(2) 1989, pp. 185-198.
12. R. Przywarski, S. Grabowski, G. Navarro, and A. Salinger: FM-KZ: an even simpler alphabet-independent FM-index, in Proceedings of the Prague Stringology Conference, Prague, Czech Republic, August 28-30, 2006, 2006, pp. 226-241.
13. E. Zeckendorf: Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège, 41 1972, pp. 179-182.
