
A Faster Longest Common Extension Algorithm

on Compressed Strings and its Applications

(Invited talk)

Shunsuke Inenaga

Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Abstract. In this talk, we introduce our recent data structure for longest common
extension (LCE) queries on grammar-compressed strings. Our preprocessing input is
a straight-line program (SLP) of size n describing a string w of length N , which is
essentially a CFG in the Chomsky normal form generating only w. We can preprocess
the input SLP in O(n log log n logN log∗ N) time so that later, given two variables and
two positions in the strings derived by the variables, we can answer the corresponding
LCE query in O(logN log∗ N) time. Our LCE data structure requires O(z logN log∗ N)
words of space, where z is the size of the Lempel-Ziv 77 factorization of w. We also
show several applications of our LCE data structure on SLPs.

1 Longest common extension (LCE) problem

The longest common extension (LCE) problem is to compute the length of the longest
common prefix of two query suffixes of a string. More formally, the problem is defined
as follows: Preprocess an input string w so that later, given a query pair (i, j) of
positions on w, we can quickly answer the length ℓ of the longest common prefix of
w[i..|w|] and w[j..|w|]. The LCE problem often appears as important subproblems of
various kinds of string processing problems, e.g., computing gapped palindromes [15]
and gapped repeats [16], approximate pattern matching [4], computing runs [5], etc.

Let N denote the length of an input string w. It is well known that after prepro-
cessing the string w in O(N) time and with O(N) words of space (or O(Nω) bits of
space, if ω is the machine word size), the LCE of any two query suffixes can be com-
puted in O(1) time, by applying a lowest common ancestor data structure [11,23,6] to
the suffix tree of w [24,10]. The O(N)-word space usage, however, can be problematic
for massively long strings, and hence, a great deal of effort has been put towards
developing more space-efficient LCE data structures.

2 LCE problem on grammar-compressed strings

In this research, we consider the LCE problem on grammar compressed strings which
are represented by straight-line programs (SLPs). An SLP for a string w is a context-
free grammar in the Chomsky normal form which derives only w. Let V = X1, . . . , Xn

be the sequence of n variables of an SLP S which represents a string w of length N ,
where Xn is the last variable deriving w. The number n of variables is called the
size of the SLP S. We assume that V has no redundant variables, i.e., each Xu in
V appears at least once in the derivation tree of Xn. On this assumption, n ≤ N
always holds, and hence, any SLP is asymptotically never larger than the original
string. Also, since every internal node of the derivation tree of any SLP has exactly

Shunsuke Inenaga: A Faster Longest Common Extension Algorithm on Compressed Strings and its Applications, pp. 1–4.

Proceedings of PSC 2015, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05787-2 c© Czech Technical University in Prague, Czech Republic

2 Proceedings of the Prague Stringology Conference 2015

two children, log2 N ≤ n holds. Indeed, SLPs are capable of exponential compression
for some instances, i.e., the sizes of SLPs for highly repetitive strings can be as small
as Θ(logN).

We consider the LCE problem on SLPs in the context of compressed string process-
ing (CSP) [3]: We assume that the string w is stored as an SLP S, and S is given to us
as an input for preprocessing. The task is to build a data structure which: (1) supports
efficient LCE queries on any pair of variables of S. Namely, given a query quartet
(u, v, i, j), we are to compute the longest common prefix of val(Xu)[i..|val(Xu)|] and
val(Xv)[j..|val(Xv)|], where val(·) denotes the string derived by the variable; (2) re-
quires nO(1) space; and (3) can be constructed in nO(1) time. LCE data structures
with properties (1)-(3) are of great significance, when the original string w is highly
compressible. In particular, when N is as large as Θ(2n), such LCE data structures
on SLPs achieve exponential space-saving w.r.t. the uncompressed counterparts. Note
that no algorithms which explicitly decompress the input SLP can achieve (3), since
the length N of the original uncompressed string w can be as large as Θ(2n).

A folklore LCE algorithm on SLPs is the following: Precompute the length of the
decompressed string val(Xu) for every variable Xu in V . This can be done in O(n)
total time in a simple bottom-up manner, and all the lengths can be stored with
O(n) words of total space (assuming the machine word size ω is at least log2 N).
Then, we can simulate a traversal from the root to each leaf of the derivation tree of
each variable Xu in O(h) time, where h is the height of the last variable Xn. Thus,
LCE query (u, v, i, j) on an input SLP can be answered in O(hℓ) time, where ℓ is the
answer (LCE length) to the query. Note that log2 N ≤ h ≤ n always holds, and that
the answer ℓ can be as large as O(N).

Karpinski et al. [14] showed the first non-trivial LCE data structure on SLPs which
requires O(n3) words of space and answers LCE queries of limited form (u, v, i, 1) in
O(n log n) time. Their data structure can be constructed in O(n4 log n) time. Miyazaki
et al. [19] proposed a data structure which requires O(n2) words of space and can
answer LCE queries of limited form (u, v, i, 1) in O(n2) time. Their algorithm can be
extended to support LCE queries of general form (u, v, i, j) in O(n2h) time with the
same space bound [12]. Lifshits [17] showed how to construct Miyazaki et al.’s data
structure in O(n2h) time. I et al. [12] developed an LCE data structure on SLPs which
requires O(n2) words of space, supports LCE queries of general form in O(h logN)
time, and can be constructed in O(n2h) time. The common basic idea to all these
data structures is to virtually align the leaves of the derivation trees of two variables
Xu and Xv with appropriate offsets, and compute maximal subtrees whose leaves
correspond to the LCE. Bille et al. [7] proposed a randomized LCE data structure.
We omit its details, since here we concentrate on deterministic LCE data structures.

2.1 A new faster LCE data structure on SLPs

In this talk, we introduce our new LCE data structure on SLPs which requires
O(z logN log∗ N) words of space, and supports LCE queries of general form (u, v, i, j)
on SLPs in O(logN log∗ N) time, where z is the size of the Lempel-Ziv 77 factoriza-
tion [25] of the original string w. Rytter [21] showed that z is a lower bound of
the size of any SLP representing the string w, i.e., z ≤ n always holds. Hence this
new LCE data structure is rather small. Also, since log∗ N is smaller than h, our
LCE query time is always better than that of the state-of-the-art data structure by

S. Inenaga: A Faster Longest Common Extension Algorithm on Compressed Strings. . . 3

I et al. [12]. We also show that our new LCE data structure can be constructed in
O(n log log n logN log∗ N) time from a given SLP of size n.

The mechanism of our new LCE data structure is significantly different from the
previous LCE data structures on SLPs. The new algorithm works on the trees induced
by the signature encodings [2,1] of the strings derived by the variables, rather than
on the derivation trees of the variables.

Using our faster LCE data structure, we improve the best known solutions to
several important problems on SLPs, e.g. computing all palindromic substrings [18]
and computing the Lyndon factorization of the original string [13].

These results are an outcome of a joint work with Takaaki Nishimoto, Tomohiro
I, Hideo Bannai, and Masayuki Takeda. A full version of this work is available at [20].

3 Related work

Another line of research for space-efficient LCE data structures is to develop succinct
data structures which use space close to the information theoretic lower bound. The
longest common prefix (LCP) array for string w of length N is an array of length
N which stores the lengths of the longest common prefixes of consecutive suffixes of
w that are lexicographically sorted. Then, LCE queries on string w reduce to range
minimum queries (RMQs). Sadakane [22] proposed an RMQ data structure for an
array of length N which occupies 4N + o(N) bits of space and answers each query
in O(1) time. His data structure can be constructed in O(N) time with O(N logN)
bis of working space. Later, Fischer and Heun showed a smaller RMQ data structure
which uses only 2N+o(N) bits of space, answers each query in O(1) time, and can be
built in O(N) time with O(N) bits of working space. Each of these data structures is
an encoding of the LCP array of w, namely, the LCP array is not needed for answering
queries.

Yet another line of research is to find trade-offs between the space complexity and
the LCE query time with a parameter τ with 1 ≤ τ ≤ N . Bille et al. [9] proposed an
LCE data structure which requires O(N/

√
τ) words of space, answers each LCE query

in O(τ) time, and can be built in O(N2/
√
τ) time with O(N/

√
τ) words of working

space. Recently, Bille et al. [8] discovered a better trade-off with O(N/τ) words of
space and O(τ) LCE query time. This data structure can be built in O(N2+ε) time
using O(N/τ) words of working space, where ε > 0 is any constant. Some randomized
LCE algorithms were also proposed by these authors.

Note that all the above LCE data structures use space which is proportional to
the length N of the uncompressed string w.

References

1. S. Alstrup, G. S. Brodal, and T. Rauhe: Dynamic pattern matching, tech. rep., Depart-
ment of Computer Science, University of Copenhagen, 1998.

2. S. Alstrup, G. S. Brodal, and T. Rauhe: Pattern matching in dynamic texts, in SODA
2000, 2000, pp. 819–828.

3. A. Amir, G. Benson, and M. Farach: Let sleeping files lie: Pattern matching in z-compressed
files. J. Comput. Syst. Sci., 52(2) 1996, pp. 299–307.

4. A. Amir, M. Lewenstein, and E. Porat: Faster algorithms for string matching with k

mismatches. J. Algorithms, 50(2) 2004, pp. 257–275.
5. H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta: A new

characterization of maximal repetitions by Lyndon trees, in SODA 2015, 2015, pp. 562–571.

4 Proceedings of the Prague Stringology Conference 2015

6. M. A. Bender and M. Farach-Colton: The LCA problem revisited, in LATIN 2000, 2000,
pp. 88–94.

7. P. Bille, P. H. Cording, I. L. Gørtz, B. Sach, H. W. Vildhøj, and S. Vind: Finger-
prints in compressed strings, in WADS 2013, 2013, pp. 146–157.

8. P. Bille, I. L. Gørtz, M. B. T. Knudsen, M. Lewenstein, and H. W. Vildhøj: Longest
common extensions in sublinear space, in CPM 2015, 2015, pp. 65–76.

9. P. Bille, I. L. Gørtz, B. Sach, and H. W. Vildhøj: Time-space trade-offs for longest
common extensions. J. Discrete Algorithms, 25 2014, pp. 42–50.

10. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan: On the sorting-complexity
of suffix tree construction. J. ACM, 47(6) 2000, pp. 987–1011.

11. D. Harel and R. E. Tarjan: Fast algorithms for finding nearest common ancestors. SIAM
J. Comput., 13(2) 1984, pp. 338–355.

12. T. I, W. Matsubara, K. Shimohira, S. Inenaga, H. Bannai, M. Takeda, K. Narisawa,

and A. Shinohara: Detecting regularities on grammar-compressed strings. Inf. Comput., 240
2015, pp. 74–89.

13. T. I, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda: Faster Lyndon factorization
algorithms for SLP and LZ78 compressed text, in SPIRE 2013, 2013, pp. 174–185.

14. M. Karpinski, W. Rytter, and A. Shinohara: An efficient pattern-matching algorithm for
strings with short descriptions. Nordic Journal of Computing, 4 1997, pp. 172–186.

15. R. Kolpakov and G. Kucherov: Searching for gapped palindromes. Theor. Comput. Sci.,
410(51) 2009, pp. 5365–5373.

16. R. Kolpakov, M. Podolskiy, M. Posypkin, and N. Khrapov: Searching of gapped repeats
and subrepetitions in a word, in CPM 2014, 2014, pp. 212–221.

17. Y. Lifshits: Processing compressed texts: A tractability border, in CPM 2007, vol. 4580 of
LNCS, 2007, pp. 228–240.

18. W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and

K. Hashimoto: Efficient algorithms to compute compressed longest common substrings and
compressed palindromes. Theor. Comput. Sci., 410(8–10) 2009, pp. 900–913.

19. M. Miyazaki, A. Shinohara, and M. Takeda: An improved pattern matching algorithm for
strings in terms of straight-line programs, in CPM 1997, 1997, pp. 1–11.

20. T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda: Dynamic index, LZ factor-
ization, and LCE queries in compressed space. CoRR, abs/1504.06954 2015.

21. W. Rytter: Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theor. Comput. Sci., 302(1-3) 2003, pp. 211–222.

22. K. Sadakane: Succinct data structures for flexible text retrieval systems. J. Discrete Algo-
rithms, 5(1) 2007, pp. 12–22.

23. B. Schieber and U. Vishkin: On finding lowest common ancestors: Simplification and par-
allelization. SIAM J. Comput., 17(6) 1988, pp. 1253–1262.

24. P. Weiner: Linear pattern-matching algorithms, in Proc. of 14th IEEE Ann. Symp. on Switch-
ing and Automata Theory, 1973, pp. 1–11.

25. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, IT-23(3) 1977, pp. 337–349.

