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Preface

There are two basic principles of pattern matching:

1. Forward pattern matching.

2. Backward pattern matching.

We covered the forward pattern matching in Volume I in great detail. In
this Volume we will show the methods of backward pattern matching.

We use, in this Volume, some principles, notions and algorithms presented
in Volume I. Let us list important notions used in this Volume:

- finite automata, their properties and operations with them,

- d-subsets created during determinisation of nondeterministic automata,

- depth of state of acyclic finite automaton,

- prefix, suffix, factor, and factor oracle automata, their properties and
construction,

- backbone of suffix or factor automaton,

- terminal state of prefix, suffix, factor, and factor oracle automata,

- border of a string and its computation,

- repetition in a string, repetition table and its construction.

Prague, March 2006 Bořivoj Melichar
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7 Exact backward matching of one pattern

The exact backward pattern matching approach of one pattern is discussed
in this Chapter. The text and the pattern are matched in the backward
direction. It means that the comparison of symbols is performed from right
to left. Surprisingly, backward and forward pattern matching are not symet-
rical for pattern. The main difference of backward pattern matching with
respect to forward pattern matching and the main advantage of backward
pattern matching is that in can be faster. This property follows from the
fact that some symbols in the text need not be inspected during matching.

7.1 Elementary algorithm

The elementary algorithm compares all symbols of the pattern with symbols
of the text. The principle of this approach is shown in Fig. 7.1. This
algorithm performs the exact backward matching of one pattern. When the

var TEXT : array[1..N ] of char;
PATTERN : array[1..M ] of char;
I, J : integer;
...
begin
I := 0;
J := M ;
while I ≤ N − M do
begin
while (J > 0) and (TEXT [I + J ] = PATTERN [J ]) do J := J − 1;
if J = 0 then
begin
output (I + 1);
J := M ;

end;
(∗) I := I + 1; {length of shift=1}

end;
end;

Figure 7.1: The elementary algorithm for backward exact pattern matching
of one pattern

pattern is found then the value of variable I is the position just before the
first symbol of the occurrence of the pattern in the text. The pattern is then
“shifted” one position to the right. Meaning of variables in the elementary
algorithm is shown in Fig. 7.2.

We will use the number of comparisons of symbols (see expression
TEXT [I + J ] = PATTERN [J ]) as the measure of the time complexity of
the algorithm. The maximal number of symbol comparisons is NC = n ∗m,
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TEXT

1 I N

1

J

M

PATTERN

Figure 7.2: Meaning of variables in the program from Fig. 7.1

where n is the length of text and m is the length of the pattern. The time
complexity is O(n∗m). The maximal number of comparisons NC is reached
for text T = an−mbam−1 and for pattern P = bam−1. The elementary algo-
rithm has no extra space requirements.

The use of the elementary algorithm for matching of a finite set of pat-
terns is also possible. In this case, the algorithm is used for each pattern
separately. The time complexity is O(n ∗

∑p
i=1

mi), where p is the number
of patterns in the set and mi is the length of i–th pattern, i = 1, 2, . . . , p.
The next variant of the elementary algorithm is for the backward approxi-
mate pattern matching using Hamming distance. It is shown in Fig. 7.3. The
time complexity is again O(n ∗ m). The maximal number of comparisons
NC is reached for text T = an−mbkam−k and for pattern bkam−k. This
algorithm has low extra space requirements. The only additional integer
variables (NERR,K ) are used.

7.2 Backward pattern matching automata for one pattern

In the elementary algorithms (see Fig. 7.1 and 7.3), the length of shift of
the pattern is always equal to one. The shift can be greater if we take into
account the periodicity inside the pattern. The simplest method how to
enlarge the shift is a heuristics called “bad character shift”. This heuristics is
used in the Boyer–Moore–Horspool (BMH ) algorithm. The BMH algorithm
uses the distance of symbols from the end of pattern. Longer shifts can be
achieved using longer parts of the pattern than one symbol. We present four
principles, how to enlarge the shift:

1. To look for the occurence of the rightmost inspected symbol of the
text in the pattern (see Section 7.2.1).

2. To look for a repeated suffix of the pattern (see Section 7.2.2).

3. To look for a prefix of the pattern (see Section 7.2.3).

4. To look for an antifactor of the pattern (see Section 7.2.5).

These principles are depicted in Figs. 7.4 - 7.7.
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var TEXT : array[1..N ] of char;
PATTERN : array[1..M ] of char;
I, J, K, NERR, SHIFT : integer;
...
K := {number of errors allowed};
begin
SHIFT := 1;
I := 0;
while I ≤ N − M do
begin
J := M ;
NERR := 0;
while NERR ≤ K and (J > 0) do
begin
if (TEXT [I + J ] 6= PATTERN [J ]) then NERR := NERR + 1;
J := J − 1;

end;
if J = 0 then output (I + 1);

I := I + SHIFT ;
end;

end;

Figure 7.3: The elementary algorithm for the backward approximate match-
ing of one pattern using the Hamming distance

TEXT

PATTERN shift

equal symbols

Figure 7.4: Principle of looking for the rightmost repetition of the last in-
pected symbol in the text
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TEXT

PATTERN shift
repeated suffix

suffix found

Figure 7.5: Principle of looking for a repeated suffix of the pattern

TEXT

PATTERN shift
equal prefix

prefix found

Figure 7.6: Principle of looking for a prefix of the pattern

TEXT

PATTERN

shift

factor or subsequence

leftmost possible
occurence of the factor

antifactor

z

x

Figure 7.7: Principle of looking for an antifactor of the pattern
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The length of shift is shown for all cases. Moreover we present classical
Boyer–Moore algorithm which is a combination of several approaches (see
Section 7.2.4). Suffix automata, factor automata and factor oracle automata
for reversed patterns can serve as models for all these principles. All these
automata are described in Volume. I. The length of shift is central notion in
all algorithms presented here. It is important, in this context, computation
of shift when the pattern is found. In some cases it is the special shift and
it is called matchshift. The matchshift is computed in this way:

matschshift := m − length(Border(P )),
where P is the pattern having length m,

Border(P ) is the longest border of P .
The matchshift is shown in Fig. 7.8.

TEXT

PATTERN

matchshift
the closest possible
occurence of pattern

Border

Figure 7.8: Principle of matchshift

The matchshift ensures that the closest occurence of the pattern after
its match can be found.

7.2.1 BMH algorithm

BMH (Boyer-Moore-Horspool) algorithm compares symbols of pattern and
symbols of text from right to left starting from the last symbol of the pattern.
As soon as a mismatch occurs then the shift is performed. The shift is given
by the distance of occurence of the rightmost inspected symbol in the text
from the right end of the pattern. This distance must be greater than zero.
For symbols absent in the pattern the shift is equal to the length of the
pattern. To explain it consistently with the approach used below a factor
automaton is used as the base for the computation of “bad character shift”
(BCS ) table.

Algorithm 7.1
Computation of BCS table.
Input: Pattern P = p1p2 . . . pm, p1, p2, . . . , pm ∈ A.
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Output: BCS table.
Method:

1. Construct a nondeterministic factor automaton for the reversed pat-
tern PR.

2. Construct the first row of the transition table of the deterministic
factor automaton.

3. Select for each symbol a ∈ A the state q having the shortest distance
dist(q) from the end of the pattern greater than 0.
Set BCS (a) = dist(q) − 1.

4. If some symbol b ∈ A does not occur in the pattern, set BCS (b) = m.
2

Example 7.2
Let pattern be P = abcab and alphabet A = {a, b, c, d}. Let us compute the
BCS table.

1. The nondeterministic factor automaton for the reversed pattern PR =
bacba has the transition diagram depicted in Fig. 7.9

a

a

b

b

c

c

a

a

b START
5 4 3 2 1 0

Figure 7.9: Transition diagram of the nondeterministic factor automaton for
pattern PR = bacba from Example 7.2

2. As we use the distances from the end of the pattern as labels of states
then dist(q) = q. The first row of the transition table of the determin-
istic factor automaton has the following form:

δ a b c d

0 25 14 3

3. The BCS table has the following form:

a b c d

BCS 1 3 2 5

Note, that BCS (d) = 5, because symbol d does not occur in the pattern
(see step 4.).

2

Now we can make the change in the elementary algorithm (see Fig. 7.1) in
order increase the shift:
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Replace statement
(∗) I := I + 1;

by statement
I := I + BCS [TEXT[I + M ]];

It means that the shift depends on the rightmost symbol in text aligned
to the rightmost symbol of the pattern. If pattern is found then the shift
is given by BCS [TEXT[I + M ]]. The next Example shows the backward
pattern matching using the BCS table.

Example 7.3
Let pattern be P = abcab (see Example 7.2) and text T = bcbababcabab.
The backward pattern matching performs following steps:

b c b a b a b c a b a b mismatch (c 6= b)
a b c a b BCS [b] = 3
b c b a b a b c a b a b mismatch (b 6= c)

a b c a b BCS [c] = 2
b c b a b a b c a b a b match

a b c a b BCS [b] = 3

The matching ends because the shift is behind the end of the text. Fig. 7.10
shows the visualisation of the behaviour of the BMH algorithm for pattern
P = abcab. Note that some symbols of the text are not inspected. 2

Position:

1

b

2

c

3

b

c

4

a

a

5

b

b

6

a

a

7

b

b

8

c

b

c

9

a

a

10

b

b

11

a

12

b

c b
shift=3=BCS[b]
¹

b c¹

shift=2=BCS[c]

match
shift=3=BCS[b]

shift

Figure 7.10: Behaviour of BMH algorithm for pattern P = abcab from
Example 7.3

7.2.2 Looking for repeated suffixes of the pattern

The basic tool for this approach, looking for repeated suffixes of the pat-
tern, is a backbone of the factor automaton for the reversed pattern. Such
automaton is able to identify repeated suffixes of the pattern. This heuris-
tics is called “good suffix shift” (GSS ). Let us show this principle using an
example.
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Example 7.4
Let pattern be P = baaba. The reversed pattern is PR = abaab. We con-
struct factor automaton M1 for this reversed pattern. Transition diagram
of nondeterministic factor automaton M1 is depicted in Fig. 7.11. All its

b

b

a

a

a

a

b

b

a START
5 4 3 2 1 0

Figure 7.11: Transition diagram of nondeterministic factor automaton M1

for reversed pattern PR = abaab from Example 7.4

states are final states. The next step is construction of equivalent deter-
ministic factor automaton M2. During this construction we save created
d–subsets. Transition tables of both nondeterministic factor automaton M1

and its deterministic equivalent M2 are shown in Table 7.1. Transition di-

a b

0 1, 3, 4 2, 5

1 2

2 3

3 4

4 5

5

a) transition table of M1

a b

0 134 25

134 4 25

25 3

3 4

4 5

5

b) transition table of M2

Table 7.1: Transition tables of factor automata M1 and M2 from Exam-
ple 7.4

agram of deterministic factor automaton M2 is depicted in Fig. 7.12. To

b a

a

a b

b

a START
5 4 3 25 134 0

Figure 7.12: Transition diagram of deterministic factor automaton M2 for
PR = abaab from Example 7.4

obtain backbone of factor automaton M2, we remove transitions from state
0 to state 25 for input symbol b and from state 134 to state 4 for input
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symbol a. Now we construct the suffix repetition table. It has the following
form:

d-subset Suffix Repetitions

134 a (1, F ), (3, G), (4, S)

25 ba (2, F ), (5, G)
2

Backbone of factor automaton M2 starting from the initial state 0 is reading
text from right to left. As soon as a mismatch occurs, the automaton is
starting to read the text from the position which is given by the previous
position and the shift. The length of shift is the distance between the found
suffix and its closest repetition (see Fig. 7.5). If the repetition of the suffix
does not exist, then the shift is given by m − length(Border(P )), where m

is the length of the pattern, and Border(P ) is the longest border of P . The
shift in the case of the mismatch in the initial state is equal to 1. The table
of shifts from Example 7.4 for states in which the mismatch occurs is shown
in Table 7.2.

State Suffix GSS J

0 ε 1 5

134 a 2 4

25 ba 3 3

3 aba 3 2

4 aaba 3 1

5 baaba 3 0

Table 7.2: Table of shifts (good suffix shifts, GSS ) for pattern P = baaba

from Example 7.4

The elementary algorithm can be used for this type of the backward
pattern matching (see Fig. 7.1). The only required change is replacement of
statement

(∗) I := I + 1;
by statement
I := I + GSS[J ];

where GSS is the “good suffix shift”. The good suffix shift depends on
the distance between end of the pattern and the rightmost repetition of
the found suffix. Variable J expresses a position in the pattern. For each
position it is possible to identify the rightmost longest repeating suffix and
the distance of its end from the end of the pattern. In Table 7.2 the possible
values of J are included.
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Example 7.5
Let text T be T = ababbababab and pattern P = baaba. The suffix automa-
ton from Example 7.4 performs following sequence of moves:

TEXT : a b a b b a b a a b a state,action J

b a a b a 0,mismatch,shift = 1 5

b a a b a 0,match 5
134,match 4
25,mismatch,shift = 3 3

b a a b a 0,match 5
134,mismatch,shift = 1 4

b a a b a 0,mismatch,shift = 1 5

b a a b a 0,match 5
134,match 4
25,match 3
3,match 2
4,match 1
5,pattern found,shift = 3 0

In this situation the pattern matching ends, because the shift is behind
the text. The behaviour of the suffix automaton using GSS shifts is visu-
alised in Fig. 7.13. Backbone of the factor automaton M2 starts allways

Position:

1

a

2

b

3

a

4

b

5

25

b

6

134

a

7

5

b

8

4

a

9

134

3

a

10

25

b

11

134

a

b a
shift =    = GSS(  )

¹

1 5

b a
shift =    = GSS(  )

¹

3 3

a b
shift = 2 = GSS(  )

¹

4

shift

0 0 0 0

Figure 7.13: Behaviour of the suffix automaton for reversed pattern
PR = baaba using GSS table from Example 7.5

in state 0. The matching starts at position 5. Because in the initial state
mismatch occurs, the shift is equal to 1 and the next starting position is
position 6.

12



7.2.3 Looking for prefixes of the pattern

We present two methods based on the principle of looking for prefixes of the
pattern:

- backward DAWG matching (BDM ),

- reduced good prefix shift (RGPS ).

7.2.3.1 Backward DAWG matching (BDM ) The basic tool for the
approach is a suffix automaton for the reversed pattern. This automaton is
able to identify all suffixes of the reversed pattern, e.g. it is able to identify
all prefixes of the pattern while reading the text backwards. As soon as the
mismatch occurs, pattern is shifted and the automaton starts to read the
text from the position which is given by the previous position and the shift.
The heuristics is called “good prefix shift” (GPS ). Let us show this principle
using an example.

Example 7.6
Let pattern P be P = abaab over alphabet A = {a, b, c}. The reversed
pattern is PR = baaba. We construct nondeterministic suffix automaton
SN for this reversed pattern. Transition diagram of nondeterministic suffix
automaton SN is depicted in Fig. 7.14. The next step is the construc-

a

a

b

b

a

a

a

a

b START
5 4 3 2 1 0

Figure 7.14: Transition diagram of nondeterministic suffix automaton SN

for PR = baaba from Example 7.6

tion of deterministic suffix automaton SD. During this construction we
save created d–subsets. Transition table of this automaton is shown in Ta-
ble 7.3. Transition diagram of deterministic suffix automaton SD is depicted
in Fig. 7.15. This automaton is able to identify following set of prefixes of P :

Pref(P ) = {ε, a, ab, aba, abaa, abaab}. 2

The suffix automaton is therefore used for the identification of the longest
prefix of the pattern while reading the text backwards. As soon as the
mismatch occurs, the automaton starts to read the text from the position
which is given by the previous position and the shift. The length of the
shift is the difference between the length of the pattern and the length
lprefix of the longest found prefix: shift := m – lprefix. Let us note that

13



a b c

0 235 14

14 25

25 3

235 3 4

3 4

4 5

5

Table 7.3: Transition table of deterministic suffix automaton SD for reversed
pattern PR = baaba from Example 7.6

a b

b

a

a a

a b START
5 4 3 25

235

14 0

Figure 7.15: Transition diagram of deterministic suffix automaton SD for
PR = baaba from Example 7.6

lprefix is not the number of symbols read, but can be less or equal to this
number. Fig. 7.16 shows the behaviour of the suffix automaton for the
reversed pattern. The arrows (↓) show the position after each shift. In
position 20 the pattern is found. The previous prefix has length 4 and it can
be seen that this already found prefix is not necessary to match it again.
This is the source of an optimisation.

The BDM pattern matching algorithm shown in Fig. 7.17 uses the suffix
automaton for the reversed pattern, length m of the pattern and matchshift
as parameters. The matchshift is the shift performed after reporting the
match and it is equal to the length of the pattern minus the length of the
Border (the longest border) of the pattern. Moreover, it uses variable lprefix
which is the length of the longest prefix found since the recent shift.

The configuration of Algorithm BDM is fourtuple
(q,I,J,lprefix ),

where q is a state of automaton M . The initial configuration is (q0, 0, m, 0).
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Position:

1

a

4 3 2 5

2

a

3

a

4

3

a

5

235

a

6

a

7

3

a

8

25

a

9

14

b

10

5

a

11

4

b

12

235

a

13

c

14

14

b

15

b

16

5

5

a

17

4

4

b

18

3

3

a

19

235

25

a

20

14

b

It needs not to be matched again !

0 0 0 0 0 0

Figure 7.16: Behaviour of suffix automaton SD for reversed pattern
PR = baaba from Example 7.6

Example 7.7
Let us use the suffix automaton for reversed pattern PR = baaba from
Example 7.6 and let us show the matching in text:

1
T =

2 3 4 5 6 7 8 9 10 11 12 13 14

a b a a a b a b a a b b a b

BDM algorithm performs the following sequence of steps:

(0,0,5,0)
a

⊢ (235, 0, 4, 1)
a

⊢ (3, 0, 3, 1)shift 4 = m − lprefix = 4

⊢ (0, 4, 5, 0)
a

⊢ (235, 4, 4, 1)
b

⊢ (4, 4, 3, 1)
a

⊢ (5, 4, 2, 3)shift = m − lprefix = 2

⊢ (0, 6, 5, 0)
b

⊢ (14, 6, 4, 0)
a

⊢ (25, 6, 3, 2)
a

⊢ (3, 6, 2, 2)
b

⊢ (4, 6, 1, 2)
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a

⊢ (5, 6, 0, 5)match 7, shift = matchshift = 3

⊢ (0, 9, 5, 0)
b

⊢ (14, 9, 4, 0)
a

⊢ (25, 9, 3, 2)shift = m − lprefix = 3

⊢ stop 2

BDM algorithm performs the comparison of 12 symbols. The behaviour of
the algorithm is visualised in Fig. 7.19.
BDM algorithm is somehow ineffective, because it is matching symbols of
prefixes already found. It is possible to improve it and obtain more effective
algorithm. The modification consists in the introduction of an additional
variable ncomp having the value equal to the length of shift and decrement-
ing its value by one after every comparison. If ncomp is zero, then the
pattern is found.

The configuration of BDM algorithm with optimisation is fivetuple
(q,I,J,lprefix,ncomp).

The initial configuration is (q0, 0, m, 0, m).

Example 7.8
BDM algorithm with optimisation performs for the pattern and text from
Example 7.7 the following sequence of steps:

(0,0,5,0,5)
a

⊢ (235, 0, 4, 1, 4)
a

⊢ (3, 0, 3, 1, 3)shift = m − lprefix = 4

⊢ (0, 4, 5, 0, 4)
a

⊢ (235, 4, 4, 1, 3)
b

⊢ (4, 4, 3, 1, 2)
a

⊢ (5, 4, 2, 3, 1)shift = m − lprefix = 2

⊢ (0, 6, 5, 0, 2)
b

⊢ (14, 6, 4, 0, 1)
a

⊢ (25, 6, 3, 2, 0)match, shift = matchshift = 3

⊢ (0, 9, 5, 0, 3)
b

⊢ (14, 9, 4, 0, 2)
a

⊢ (25, 9, 3, 2, 1)shift = m − lprefix = 3

⊢ stop 2

Algorithm BDM with optimisation performs 9 comparisons only. Behaviour
of BDM algorithm with optimisation is visualised in Fig. 7.20.
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const M = {length of pattern};
MATCHSHIFT = {length of shift when pattern is found};

var TEXT : array [1..N] of char;
I,J : integer;
STATE : TSTATE;
δ : array[1..MAXSTATE,1..MAXSYMBOL] of TSTATE;
F : set of TSTATE;
LPREFIX: integer;
SHIFT: integer;
. . .

begin
LPREFIX := 0;
STATE := q0;
I := 0;
J := M;
while (I ≤ N-M) do

begin
if δ [STATE,TEXT[I+J]] = fail

then
begin

if LPREFIX = M then
begin

output(I + 1);
SHIFT := MATCHSHIFT;

end
else

SHIFT := M - LPREFIX;
LPREFIX := 0;
STATE := q0;
I := I + SHIFT;
J := M;

end;
else

begin
STATE := δ[STATE,TEXT[I + J]];
J := J - 1;
if STATE ∈ F then LPREFIX := M - J;

end;
end;

end;

Figure 7.17: BDM algorithm
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const M = {length of pattern};
MATCHSHIFT = {length of shift when pattern is found};

var TEXT : array [1..N] of char;
I,J,LPREFIX,SHIFT,NCOMP : integer;
STATE : TSTATE;
δ : array[1..MAXSTATE,1..MAXSYMBOL] of TSTATE;
F : set of TSTATE;
. . .

begin
LPREFIX := 0;
STATE := q0;
NCOMP := M;
I := 0;
J := M;
while (I≤N-M) do

begin
if δ [STATE,TEXT[I+J]]= fail or NCOMP = 0

then
begin

if LPREFIX = M or NCOMP = 0 then
begin

output(I + 1);
SHIFT := MATCHSHIFT;

end
else

SHIFT := M - LPREFIX;
NCOMP := SHIFT;
LPREFIX := 0;
STATE := q0;
I := I + SHIFT;
J := M;

end;
else

begin
STATE := δ[STATE,TEXT[I + J]];
J := J - 1;
if STATE ∈ F then LPREFIX := M - J;
NCOMP := NCOMP - 1;

end;
end;

end;

Figure 7.18: BDM algorithm with optimisation
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Position:

1

a

2

b

3

a

4

3

a

5

235

a

6

b

7

5

5

a

8

4

4

b

9

235

3

a

10

25

a

11

14

b

12

b

13

25

a

14

14

b

shift

0 0 0 0

Figure 7.19: Behaviour of the suffix automaton for reversed pattern
PR = baaba from Example 7.7

Position:

1

a

2

b

3

a

4

3

a

5

235

a

6

b

7

5

a

8

4

b

9

235

a

10

25

a

11

14

b

12

b

13

25

a

14

14

b

0000

shift

Figure 7.20: Behaviour of the suffix automaton for reversed pattern
PR = baaba from Example 7.8 using BDM algorithm with the optimisa-
tion
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7.2.3.2 Reduced backward DAWG matching (RGPS) The second
method, looking for prefixes which are suffixes of the pattern, is also based
on the use of a suffix automaton for the reversed pattern. Finding prefixes of
the pattern which are also suffixes of the pattern is done by a reduced suffix
automaton containing only its backbone. It leads to the heuristics called
“reduced good prefix shift” (RGPS ). But the RGPS shift is not “safe”. It
means that some occurrences of the pattern can be missed. This is why
this approach cannot be used alone but only in a combination with other
approaches. An example of such combination is the Boyer–Moore algorithm
presented in the next section. Let us show this principle using an example.

Example 7.9
Let pattern P be P = babab over alphabet A = {a, b, c}. The reversed pat-
tern is PR = babab = P . We construct a suffix automaton for the reversed
pattern. Transition diagram of the nondeterministic suffix automaton for re-
versed pattern PR = babab is depicted in Fig. 7.21. Transition tables of both

b

b

a

a

b

b

a

a

b START
5 4 3 2 1 0

Figure 7.21: Transition diagram of the nondeterministic suffix automaton
for reversed pattern PR = babab from Example 7.9

nondeterministic and deterministic suffix automata are shown Table 7.4.

a b c

0 2, 4 1, 3, 5

1 2

2 3

3 4

4 5

5

a b c

0 24 135

135 24

24 35

35 4

4 5

5

Table 7.4: Transition tables of the nondeterministic and deterministic suffix
automata for reversed pattern PR = babab from Example 7.9

Transition diagram of the deterministic suffix automaton is depicted in
Fig. 7.22. The part of this automaton which is not the backbone is drawn
by dashed line. A table containing information on the repeated prefix for
each suffix is shown in Table 7.5. 2
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b a b a

a

b START
5 4 35 24 135 0

Figure 7.22: Transition diagram of the deterministic suffix automaton for
reversed pattern PR = babab from Example 7.9

d−subset Suffix Repeated prefix

0 ε ε

135 b b

24 ab b

35 bab bab

4 abab bab

5 babab bab

Table 7.5: Correspondence between suffixes and repeated prefixes of reversed
pattern PR = babab from Example 7.9

Algorithm 7.10
Computation of reduced good prefix shift.
Input: Backbone B = (Q, A, δ, q0, F ) of the suffix automaton M for pattern
P having length m.
Output: Reduced good prefix shift table for pattern P .
Method: Inspect backbone B of the suffix automaton starting in state
q0 and continuing to next state up to the terminal state. Two situations
occur:

1. The inspected state q is a final state. The value of RGPS(q) = m −
depth(q).

2. The inspected state q is not a final state. The value of RGPS =
m − depth(p), where p is the state having the closest depth less than
depth(q). 2

Now we can construct a table of shifts (restricted good prefix shifts, RGPS ).
The RGPS table is shown in Table 7.6. The elementary algorithm can be
used for this type of the backward pattern matching (see Fig. 7.1). The only
required change is replacement of statement

(*) I := I + 1;
by statement

I := I + RGPS[J ];

where RGPS is the “reduced good prefix shift” table. In Table 7.6 the
possible values of J are included.
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State Suffix RGPS J

0 ε 5 5

135 b 4 4

24 ab 4 3

35 bab 2 2

4 abab 2 1

5 babab 2 0

Table 7.6: Table of shifts (Reduced Good Prefix Shifts, RGPS ) for reversed
pattern PR = babab from Example 7.9 2

Example 7.11
Let T text be T = bbbababab and pattern P = babab. The reduced suffix
automaton from Example 7.9 performs the following moves:

Text: bbaababab State Action J

babab 0 match 5
135 match 4
24 mismatch, shift = 4 3 RGPS(3) = 4

babab 0 match 5
135 match 4
24 match 3
35 match 2
4 match 1
5 patternfound, shift = 2 0 RGPS(0) = 2

In this situation the pattern matching ends, because the shift is behind
the end of the text. The behaviour of the suffix automaton using RGPS
shifts is visualised in Fig. 7.23 2

Example 7.12
This example demonstrates, how one occurrence of the pattern is missed.
Let text T be T = bbbbababab and pattern P = babab. The reduced suffix
automaton from Example 7.9 performs the following moves:

Text: bbbbababab State Action J

babab 0 mismatch, shift = 5 5 RGPS(5) = 5
babab 0 match 5

135 match 4
24 match 3
35 match 2
4 match 1
5 patternfound, shift = 2 0 RGPS(0) = 2
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Position:

1

b

2

b

3

a

4

24

a

5

135

5

b

6

4

a

7

135

b

8

24

a

9

135

b

0 0

Figure 7.23: Behaviour of the suffix automaton for reversed pattern
PR = babab using RGPS table from Example 7.11

We can see that the first occurrence of the pattern at position 4 is not
found. 2

7.2.4 Boyer–Moore algorithm

The classical Boyer–Moore (BM ) algorithm [BM77] uses:
bad character shift (BCS, see Section 7.2.1),
good suffix shift (GSS, see Section 7.2.2), and
reduced good prefix shift (RGPS, see Section 7.2.3.2) heuristics.
The basic principle of BM algorithm is based on the selection of the

longer shift from BCS and minimum of GSS and RGPS shifts. Let us show
the principle of the BM algorithm using an example.

Example 7.13
Let pattern P be P = ababba over alphabet A = {a, b, c}. We compute
BCS, GSS, and RGPS for pattern P . The nondeterministic factor automa-
ton for reversed pattern PR = abbaba has transition diagram depicted in
Fig. 7.24. Transition tables of both nondeterministic and deterministic fac-

a

a

b

b

a

a

b

b

b

b

a START
6 5 4 3 2 1 0

Figure 7.24: Transition diagram of the nondeterministic factor automaton
for the reversed pattern PR = abbaba from Example 7.13

tor automata are shown in Table 7.7. The transition diagram of the deter-
ministic factor automaton is depicted in Fig. 7.25. The tables of BCS, GSS,
and RGPS are shown in Table 7.8. 2
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a b c

0 1, 4, 6 2, 3, 5

1 2

2 3

3 4

4 5

5 6

6

a b c

0 146 235

146 25

25 6 3

235 46 3

3 4

4 5

5 6

6

46 5

Table 7.7: Transition tables of the nondeterministic and deterministic factor
automata for reversed pattern PR = abbaba from Example 7.13

a

a

b

b

a

a

b

b

b

b

a START
6 5 4

46

3 25

235

146 0

Figure 7.25: Transition diagram of the deterministic factor automaton for
the reversed pattern PR = abbaba from Example 7.13

The elementary algorithm (see Fig. 7.1) can be used for this type of
backward pattern matching. The only required change is replacement of
statement

(∗) I := I + 1;
by statement
I := I + min(RGPS [J ], max(BCS [TEXT[I + J ]],GSS[J ]));

where RGPS is the “reduced good prefix shift”, BCS is the “bad character
shift”, and GSS is the “good suffix shift”.

Example 7.14
Let text T be T = aaabbababba and pattern P = ababba (from Exam-
ple 7.13). The pattern matching algorithm performs the following sequence
of moves:
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Symbol a b c

BCS 3 1 6

State d-subsets Suffix GSS RGPS J

0 0 ε 1 6 6

1 146 a 3 5 5

2 25 ba 3 5 4

3 3 bba 5 5 3

4 4 abba 5 5 2

5 5 babba 5 5 1

6 6 ababba 5 5 0

Table 7.8: BCS, GSS, and RGPS tables for reversed pattern PR = abbaba

from Example 7.13

Text: aacbbababba State Action J

ababba 0 match 6
146 match 5
25 match 4
3 mismatch, shift = 5 3 (∗)

ababba 0 match 6
146 match 5
25 match 4
3 match 3
4 match 2
5 match 1
6 patternfound, shift = 5 0 (∗∗)

Shifts were computed as follows:

(*) J = 3,TEXT [I + M ] = a :
min(RGPS [J ], max(BCS[TEXT [I + M ]],GSS [J ]))
= min(5, max(3, 5)) = 5

(**) J = 0,TEXT [I + M ] = a :
min(RGPS [J ], max(BCS [TEXT [I + m]],GSS [J ]))
= min(5, max(3, 5)) = 5

7.2.5 Looking for antifactors of the pattern

The method described in this section is based on the use of factor automaton
or factor oracle automaton for the recognition of antifactors for the reversed
pattern. An antifactor of the string w is any string which is not a factor of w.
The principle of this approach is shown in Fig. 7.7. Let us suppose, that x

is a factor of the pattern. If during the reading of symbol z we find out, that
zx is an antifactor, then we can safely shift the pattern behind symbol z. We
will call this shift “antifactor shift” (AFS ). This method is namely effective
if a factor oracle automaton is used. We start with the presentation of this
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principle using a factor automaton which is able to recognise exactly factors
and antifactors as well. A factor oracle automaton recognises antifactors
reliable, but factors tentatively, only.

7.2.5.1 Backward factor matching (BFM ) We present backward
factor matching (BFM). Let us use of a factor automaton for looking for
antifactors in the next Example.

Example 7.15
Let pattern P be P = abaab over alphabet A = {a, b, c}. The reversed
pattern is PR = baaba. We construct the factor automaton for this reversed
pattern. Transition diagram of nondeterministic factor automaton M1 for
reversed pattern PR is depicted in Fig. 7.26. The next step is the con-

a

a

b

b

a

a

a

a

b START
5 4 3 2 1 0

Figure 7.26: Transition diagram of nondeterministic factor automaton M1

for PR = baaba from Example 7.15

struction of deterministic factor automaton M2. Transition table and the
transition diagram of it is shown in Fig. 7.27. The factor automaton is used

a b c

0 235 14

14 25

25 3

235 3 4

3 4

4 5

5

a b

b

a

a

a

a

b START
5 4 3 25

235

14 0

Figure 7.27: Transition table and transition diagram of deterministic factor
automaton M2 for reversed pattern PR = baaba from the Example 7.15

for the identification of the longest factor of the pattern while reading text
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backwards. As soon as a mismatch occurs reading symbol z, an antifactor of
the pattern is recognized. The pattern is then shifted behind symbol z which
does not belong to the factor of the pattern. If means that the antifactor
shift is:

AFS = m − lfactor,

where m is length of pattern,
lfactor is length of recognised factor.

If the pattern is found, then the shift is given by the difference between the
length of the pattern and the length of the Border (the longest border) of
the pattern (matchshift). Fig. 7.28 shows the visualisation of the behaviour
of the factor automaton for reversed pattern PR = baaba. The last column
contains the length of antifactor shift (AFS ). The pattern matching algo-
rithm (BFM, see Fig. 7.29) uses the factor automaton for reversed pattern,
the length m of the pattern and matchshift as parameters. The length of
Border(abaab) = ab is equal to 2. Therefore matchshift = m−2 = 5−2 = 3.

2

Position:

match

1

b

2

b

3

b

4

b

5

a

6

b

7

a

8

b

9

b

10

a

11

a

12

b

13

a

14

a

15

b

AFS

3

3

2

2

3

4

25

4

5

5

235

14

3

4

4 25

235

235

3 14

0 0 0 0 0

Figure 7.28: Behaviour of the factor automaton for reversed pattern
PR = baaba from Example 7.15

Configuration of the BFM algorithm is a quadruple
(state,I,J,lfactor).

The initial configuration is (q0, 0, m, 0).
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const M = {length of pattern};
MATCHSHIFT = {length of shift when pattern is found};

var TEXT : array [1..N] of char;
I,J : integer;
STATE : TSTATE;
δ : array[1..MAXSTATE,1..MAXSYMBOL] of TSTATE;
F : set of TSTATE;
LFACTOR: integer;
SHIFT: integer;
. . .

begin
LFACTOR := 0;
STATE := q0;
I := 0;
J := M;
while (I ≤ N-M) do

begin
if δ [STATE,TEXT[I+J]] = fail

then
begin

if LFACTOR = M then
begin

output(I + 1);
SHIFT := MATCHSHIFT;

end
else

SHIFT := M - LFACTOR;
LFACTOR := 0;
STATE := q0;
I := I + SHIFT;
J := M;

end;
else

begin
STATE := δ[STATE,TEXT[I + J]];
J := J - 1;
LFACTOR := LFACTOR + 1;

end;
end;

end;

Figure 7.29: BFM and BOM algorithms
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Example 7.16
Let us use the factor automaton for pattern PR = baaba from Example 7.15
and show the pattern matching in text:

T =
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b b b b a b a b b a a b a a b

BFM algorithm performs the following sequence of steps:

(0,0,5,0)
a

⊢ (235, 0, 4, 1)
b

⊢ (4, 0, 3, 2)shift 3

⊢ (0, 3, 5, 0)
b

⊢ (14, 3, 4, 1)
a

⊢ (25, 3, 3, 2)shift 3

⊢ (0, 6, 5, 0)
a

⊢ (235, 6, 4, 1)
a

⊢ (3, 6, 3, 2)
a

⊢ (4, 6, 2, 3)shift 2

⊢ (0, 8, 5, 0)
a

⊢ (235, 8, 4, 1)
b

⊢ (4, 8, 3, 2)
a

⊢ (5, 8, 2, 3)shift 2

⊢ (0, 10, 5, 0)
b

⊢ (14, 10, 4, 1)
a

⊢ (25, 10, 3, 2)
a

⊢ (3, 10, 2, 3)
b

⊢ (4, 10, 1, 4)
a

⊢ (5, 10, 0, 5)match 11, shift 3

⊢ stop 2

7.2.5.2 Backward oracle matching (BOM ) For the looking for an-
tifactors the factor oracle automaton can be used as well. The method using
this approach is called also Backward Oracle Matching (BOM ). The basic
tool for the looking for antifactors of the pattern is a factor oracle automaton
for the reversed pattern. This automaton is accepting the set of all factors
of the pattern and moreover some of its subsequences. Let us show the use
of a factor oracle automaton for looking for antifactors in the next example.

Example 7.17
Let pattern be P = abaab over alphabet A = {a, b, c}. The reversed pattern
is PR = baaba. We construct the factor oracle automaton for this reversed
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pattern. Transition diagram of nondeterministic factor automaton M1(P
R)

is depicted in Fig. 7.26. The next step is construction of deterministic factor
oracle automaton M2(P

R). Transition table and transition diagram of it is
shown in Fig. 7.30. Factor oracle automaton M2(P

R) accepts the set

a b c

0 235 14

14 25

235 3 4

3 4

4 5

5

a b

b

a a

a

b START
5 4 3 235 14 0

Figure 7.30: Transition table and the transition diagram of factor oracle
automaton M2(P

R) for reversed pattern PR = baaba from the Example 7.17

L(Oracle(baaba)) =
= {ε, a, b, aa, ab, ba, aab, aba, baa, aaba, baab, baaba, bab, baba}
= Fact(baaba) ∪ {bab, baba},

where bab and baba are subsequences of string baaba.
If a factor oracle automaton for a text T accepts string x, x ∈ A∗, and does
not accepts string xz, z ∈ A, then the string xz is not a factor of text T and
therefore xz is an antifactor. Visualisation of the behaviour of factor oracle
automaton M(PR) is shown in Fig. 7.31. The pattern matching algorithm
BFM looking for antifactors can be used in connection with factor oracle
automaton as well. If we take factor oracle automaton M(PR) as an input
of algorithm BFM we obtain algorithm called BOM and the algorithm per-
forms for reversed pattern PR = baaba and for the text from Example 7.16
the following sequence of steps:

(0,0,5,0)
a

⊢ (235, 0, 4, 1)
b

⊢ (4, 0, 3, 2)shift 3

⊢ (0, 3, 5, 0)
b

⊢ (14, 3, 4, 1)
a

⊢ (235, 3, 3, 2)
b

⊢ (4, 3, 2, 3)
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a

⊢ (5, 3, 1, 4)shift 1

⊢ (0, 4, 5, 0)
b

⊢ (14, 4, 4, 1)shift 4

⊢ (0, 8, 5, 0)
a

⊢ (235, 8, 4, 1)
b

⊢ (4, 8, 3, 2)
a

⊢ (5, 8, 2, 3)shift 2

⊢ (0, 10, 5, 0)
b

⊢ (14, 10, 4, 1)
a

⊢ (235, 10, 3, 2)
a

⊢ (3, 10, 2, 3)
b

⊢ (4, 10, 1, 4)
a

⊢ (5, 10, 0, 5)match 11, shift 3

⊢ stop
2

Position:

match

1

b

2

b

3

b

4

b

5

a

6

b

7

a

8

b

9

b

10

a

11

a

12

b

13

a

14

a

15

b

AFS

3

1

4

2

3

4

23545

14

5

5

235

14

4

4 235

235

3 14

00000

Figure 7.31: Behaviour of factor oracle automaton M2(P
R) for reversed

pattern PR = baaba from Example 7.17
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8 Exact backward matching of a finite set of pat-

terns

The idea of the use finite automata as a base for the backward pattern
matching of one pattern can be used for the backward pattern matching of
a finite set of patterns. First we show the basic model of the multi–backward
pattern matching. Further we show how to use finite automata approach
for MultiBMH, MultiBDM, looking for repeated suffixes, Commentz–Walter,
and looking for antifactors of a finite set of patterns.

8.1 Model of the multibackward pattern matching

The base for the model of the multibackward pattern matching is a determin-
istic finite automaton accepting set of reversed patterns. This automaton
is extended in order to identify situations when the next transition is not
possible for some state and some input symbol. Let us call this automaton
multibackward pattern matching automaton (MBPM automaton).

Algorithm 8.1
Construction of a finite automaton for multibackward pattern matching.
Input: Finite set of patterns S = {p1, p2, . . . , p|S|}, p1, p2, . . . , p|S| ∈ A+.
Output: Model of multibackward pattern matching – deterministic finite
automaton M = (Q, A, δ, q0, F ).
Method:

1. Create nondeterministic finite automaton M1 = (Q1, A, δ1, q01, F1) ac-
cepting set of reversed patterns SR = {pR

1 , pR
2 , . . . , pR

|S|}.

2. Create deterministic finite automaton M2 = (Q2, A, δ2, q02, F2) equiv-
alent to automaton M1.

3. Create finite automaton M = (Q, A, δ, q0, F ) using automaton M2

where
Q = Q2,
q0 = q02,
F = F2,
δ(q, a) = δ2(q, a) if δ2(q, a) is defined,
δ(q, a) = fail if δ2(q, a) is undefined. 2

Example 8.2
Let S be set of patterns S = {cba, aba, cb}. Set of reversed patterns is
SR = {abc, aba, bc}. We construct finite automaton M accepting set SR

with transition function δ having some values equal to fail.

1. M1 = ({q0, q11, q12, q13, q21, q22, q23, q31, q32}, {a, b, c}, δ1, q0, {q13, q23, q32}).
The transition table for δ1 is shown in Table 8.1. Transition diagram
of the automaton M1 is depicted in Fig. 8.1.
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δ1 a b c

q0 q11, q21 q31

q11 q12

q12 q13

q13

q21 q22

q22 q23

q23

q31 q32

q32

δ2 a b c

q0 q11q21 q31

q11q21 q12q22

q12q22 q23 q13

q13

q23

q31 q32

q32

Table 8.1: Transition tables of automata M1 and M2 from Example 8.2

c

a

b

c

b

b

a

a START

q13

q23

q12

q32

q22

q11

q31

q21 q0

Figure 8.1: Transition diagram of the nondeterministic finite automaton M1

from Example 8.2

2. M2 = ({q0, q11q21, q12q22, q13, q23, q31, q32}, {a, b, c}, δ2, {q13, q23, q32}).
The transition table for δ2 is shown in Table 8.1. Transition diagram
of automaton M2 is depicted in Fig. 8.2.

3. M = ({q0, q11q21, q12q22, q13, q23, q31, q32}, {a, b, c}, δ, {q13, q23, q32}).
Transition function δ is shown in Table 8.2. 2

Algorithm for exact backward matching of the set of patterns MBPM is
shown in Fig. 8.3. The MBPM searching algorithm starts reading the text at
position lmin which is length of the shortest pattern. It is matching the text
from right to left. As soon as the value of δ(q, a) is fail then the automaton
is shifted one position to the right and reads the text again starting from
the initial state. We can see, that the shift has always the length equal to
one like in the elementary algorithm for backward matching of one pattern.
However the shift can be greater taking into account repetitions inside set
of patterns.
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c

a

c

b

b

a

START

q13

q23

q32

q12      2q2

q31

q11    21q

q0

Figure 8.2: Transition diagram of the deterministic finite automaton M2

from Example 8.2

δ a b c

q0 q11q21 q31 fail

q11q21 fail q12q22 fail

q12q22 q23 fail q13

q13 fail fail fail

q23 fail fail fail

q31 fail fail q32

q32 fail fail fail

Table 8.2: Transition table of the resulting finite automaton M from Exam-
ple 8.2

8.2 Backward matching automata for a finite set of patterns

8.2.1 MultiBMH algorithm

We can extend the principle of BMH algorithm (see Section 7.2.1) to a finite
set of patterns. The length of shift in the MultiBMH algorithm is given for
each symbol of the alphabet by the distance of the rightmost occurrence of
the rightmost inspected symbol in the text in some of respective pattern.
This distance must be greater than zero. Moreover, the length of shift is
limited by the length of the shortest pattern which is denoted lmin. If some
symbol does not occur in any element of the set of patterns then the shift is
equal to lmin. As for BMH algorithm, we use for computation of multi bad
character shift (MBCS ) table a factor automaton for a finite set of patterns
(see Volume I, Chapter 3).
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const LMIN = {length of the shortest pattern};
var TEXT : array [1..N] of char;

I,J : integer;
STATE : TSTATE;
δ : array[1..MAXSTATE,1..MAXSYMBOL] of TSTATE;
F : set of TSTATE;

...
begin

STATE := q0;
I := 0;
J := LMIN; {starting point of matching}
while (I ≤ N - LMIN) do

begin
if δ[STATE,TEXT[I + J]] = fail

then
begin

(∗) I := I + 1; {length of shift = 1}
STATE := q0;
J := LMIN;

end
else

begin
STATE := δ[STATE,TEXT[I + J]];
J := J - 1;

end;
if STATE in F then output (I + 1)

end;
end

Figure 8.3: Algorithm MBPM (multibackward pattern matching) for exact
backward pattern matching of a finite set of patterns
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Algorithm 8.3
Computation of MBCS table.
Input: Finite set of patterns S = {p1, p2, . . . , p|S|}, p1, p2, . . . , p|S| ∈ A+.
Output: MBCS table.
Method:

1. Construct nondeterministic factor automaton MN = (Q, A, δ, q0, F )
for set of reversed patterns SR = {pR

1 , pR
2 , . . . , pR

|S|}.

2. Construct the first row of transition table of deterministic factor au-
tomaton MD equivalent to MN .

3. Select for each symbol a ∈ A the state having the shortest distance
dist(q) from the end of some of patterns greater than 0.
Set MBCS(a) = min(dist(q) − 1, lmin).

4. If some symbol b ∈ A does not occur in any pattern, set MBCS(b) =
lmin. 2

Example 8.4
Let the set of patterns be S = {cbaba, bba, abbb} over alphabet A = {a, b, c, d}.
We will compute the MBCS table. Set lmin = |bba| = 3.

1. Transition diagram of the nondeterministic factor automaton MN for
set of reversed patterns SR = {ababc, abb, bbba} has the transition
diagram depicted in Fig. 8.4.

c

c

b

a

b

a

a

b

b

b

a

b

b

b

b

b

b

b

b

a

a START

5
1

4
1

4
3

3
1

3
3

3
2

2
1

2
3

2
2

1
1

1
3

1
2

0

Figure 8.4: Transition diagram of the nondeterministic factor automaton
MN for set of pattern SR = {ababc, abb, bbba} from Example 8.4
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2. As we use the distances from the end of pattern as part of the la-
bels of states (ij , i is the distance from the end of element pj), then
dist(qj) = q. The first row of transition table of the deterministic
factor automaton MD for set of pattern S has the following form:

δ a b c d

0 11311243 21412232132333 51

3. The MBCS table has the following form:

a b c d

MBCS 2 1 3 3

The shifts for symbols c and d are limited to lmin (see points 3. and 4. of
Algorithm 8.3). 2

The algorithm of pattern matching uses the transition table defining map-
ping δ of the deterministic finite automaton MD accepting the reversed pat-
terns from the set SR. We can adapt the multi backward pattern matching
algorithm (MBPM, see Fig. 8.3) by replacement of statement

(∗) I := I + 1;
by statement
I := I + MBCS [TEXT [I + LMIN ]];

where MBCS is multi bad character shift table.

Example 8.5
Let set of patterns be S = {cbaba, bba, abbb} (see Example 8.4) and let text
T = cbabbbacbaba. Transition diagram of the deterministic finite automa-
ton MD accepting reversed set of patterns SR = {cbabaR, bbaR, abbbR} is
depicted in Fig. 8.5. 2

c b

a

a

b

b

b

b b

a

START

5
1

4
1

4
3

3
1

3
3

3
2

2
1    2
2

2
3

1
1    2
1

1
3

0

Figure 8.5: Transition diagram of the finite automaton MD accepting set of
reversed patterns SR = {cbabaR, bbaR, abbbR} from Example 8.5

Transition table of the automaton MD is shown in Table 8.3. The empty
items have value fail. Behaviour of the MultiBMH algorithm is visualised
in Fig. 8.6.
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δ a b c d

0 1112 13

1112 2122

13 23

2122 31 32

23 33

31 41

32

33 43

41 51

43

51

Table 8.3: Transition table of the automaton MD accepting set of reversed
patterns SR = {ababc, abb, bbba} from Example 8.5

8.2.2 Looking for repeated suffixes of a finite set of patterns

The basic tool for this approach, looking for repeated suffixes of a finite set of
patterns, is a backbone of the factor automaton for a set of reversed patterns
(compare Section 7.2.2). This automaton identifies repeated suffixes of a set
of patterns. The heuristics of using such information we call multi good
suffix shift (MGSS ). Let us show this principle using an example.

Example 8.6
Let set of patterns be S = {cbaba, bba, abbb} over alphabet A = {a, b, c, d}.
We compute MGSS table. Set lmin = |bba| = 3. We construct nondetermin-
istic factor automaton MN for set of reversed patterns SR = {cbabaR, bbaR,

abbbR}. Its transition diagram is depicted in Fig. 8.7.
The next step is to construct equivalent deterministic factor automa-

ton MD. We save d-subsets during this construction. Transition tables of
both nondeterministic factor automaton MN and its deterministic equiva-
lent MD are shown in Table 8.4. Transition diagram of the deterministic
factor automaton MD is depicted in Fig. 8.8.
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Position:
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Figure 8.6: Behaviour of the MultiBMH algorithm for the set of patterns
S = {cbaba, bba, abbb} from Example 8.5
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Figure 8.7: Transition diagram of the nondeterministic factor automaton
MN for set of reversed patterns SR = {cbabaR, bbaR, abbbR} from Exam-
ple 8.6

39



a b c d

0 11, 31, 12, 43 21, 41, 22, 32, 13, 23, 33 51

11 21

21 31

31 41

41 51

51

12 22

22 32

32

13 23

23 33

33 43

43

a) Transition table of MN

a b c d

0 11311243 21412232132333 51

11311243 214122

21412232132333 3143 322333 51

214122 31 32 51

3143 41

322333 43 33

31 41

32

33 43

41 51

43

51

b) Transition table of MD

Table 8.4: Transition tables of factor automata MN and MD from Exam-
ple 8.6
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Figure 8.8: Transition diagram of the deterministic factor automaton MD

for set of reversed patterns SR = {cbabaR, bbaR, abbbR} from Example 8.6

To obtain the backbone of this factor automaton we remove state 3143

and the transitions drawn by dashed lines. Let us remind that the backbone
of a factor automaton can be constructed by intersection of a prefix automa-
ton and a factor automaton (see Volume I, Chapter 3). Now we construct
the suffix repetition table. It is shown in Table 8.5.

d–subset Suffix Repetitions of suffixes

11311243 a (11, F ), (12, F ), (31, G), (43, G)

214123 ba (21, F ), (23, F ), (41, S)

21412232132333 b (13, F ), (21, S), (41, G), (22, S), (32, G), (23, S), (33, G)

322333 bb (23, F ), (32, O), (33, O)

Table 8.5: The suffix repetition table from Example 8.6

The factor automaton is able to find the longest suffix matching the
respective part of text. As soon as the mismatch occurs, the automaton
starts to read the text from the position given by the previous position and
the shift. The length of shift is the minimum from the distance between the
found suffix and its closest repetition and lmin. If the repetition of the suffix
does not exist, then the shift is lmin – length(mBorder(S)), where mBorder
is the longest border of S. In the case of the mismatch the shift in the initial
state is equal to 1. Table of shifts for states in which the mismatch occurs
is shown in Table 8.6. 2
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State Suffix MGSS

0 ε 1

A a 2

B ba 2

31 aba 1

41 baba 1

51 cbaba 1

32 bba 1

C b 1

D bb 1

33 bbb 1

43 abbb 1

match

match

match

Table 8.6: Table of “multi good suffix shifts” (MGSS ) from Example 8.6

Algorithm MBPM (see Fig. 8.3) can be used for this type of the backward
pattern matching. The only required change is replacement of statement

(∗) I := I + 1;
by statement
I := I + MGSS(STATE);

where MGSS is the multi good suffix shift table.

Example 8.7
Let set of patterns be S = {cbaba, bba, abbb} (see Example 8.6) and let text
be T1 = cbabbbacbaba. Transition diagram of deterministic factor automaton
MD for set of reversed patterns SR = {cbabaR, bbaR, abbbR} is depicted in
Fig. 8.8. Its backbone is drawn by solid lines. This backbone is used by
modified algorithm MBPM. The modification consists of replacing of simple
shifts by MGSS shifts. Behaviour of the modified MBPM algorithm for text
T2 = abccbababbba is visualised in Fig. 8.9. Behaviour of this algorithm for
text T1 is visualised in Fig. 8.10. 2

8.2.3 Looking for prefixes of the finite set of patterns

We present two methods based on the principle of looking for prefixes of the
finite set of patterns. The first one is called also Multi Backward DAWG
Matching (MultiBDM, compare Section 7.2.3.1). The second method is
looking for the prefixes which are suffixes of some element of the set of
patterns. Let us call this method reduced multi good prefix shift method
(RMGPS ). Let us start with the first method.
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Position:

1
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fail
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fail
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b
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b
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a
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1

1

1
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1

1

1

1

1

5
1

4
1

4
3

3
1

3
3

3
2

match
bba

match
abbb

match
cbaba

B

C

B

A

A

C

C

C

A

D

D

B

000000000

Figure 8.9: Behaviour of modified MBPM algorithm for set of reversed
patterns SR = {cbabaR, bbaR, abbbR} from Example 8.7

8.2.3.1 Multi backward DAWG matching The basic tool for the
approach, looking for prefixes of the finite set of patterns, is a suffix au-
tomaton for the set of reversed patterns (see Volume I, Section 3.7). This
automaton identifies all suffixes of the set of reversed patterns, e.g. it is
able to identify all prefixes of the set of patterns while reading the text from
right to left. As soon as a mismatch occurs, set of patterns is shifted and
the automaton is starting to read the text from the position which is given
by the previous position and the shift. The heuristics is called multi good
prefix shift (MGPS ). Let us show this principle using an example.

Example 8.8
Let us have set of patterns S = {baa, aba, bab} over alphabet A = {a, b, c}.
We construct the suffix automaton for the set SR = {baaR, abaR, babR}
of the reversed patterns. Transition diagram of the nondeterministic suffix
automaton with ε–transitions is depicted in Fig. 8.11. The next step is
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CD
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AB

00000000

Figure 8.10: Behaviour of modified MBPM algorithm for the set patterns
S = {cbaba, bba, abbb} from Example 8.7

removal of ε–transitions. Transition diagram of this automaton is depicted in
Fig. 8.12. The last step is construction of the deterministic suffix automaton.
We save the d-subsets during the determinisation. Transition table of this
automaton is shown in Table 8.7.
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Figure 8.11: Transition diagram of the nondeterministic suffix automaton
with ε–transitions for SR = {baaR, abaR, babR} from Example 8.8
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Figure 8.12: Transition diagram of the nondeterministic suffix automaton
after removal of ε–transitions from Example 8.8
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a b c

0 11, 21, 12, 32, 23 31, 22, 13, 33

11, 21, 12, 32, 23 21 31, 22, 33

31, 22, 13, 33 32, 23

21 31

31, 22, 33 32

32, 23 33

31

32

33

Table 8.7: Transition table of the deterministic suffix automaton from Ex-
ample 8.8

Transition diagram of the deterministic suffix automaton is depicted in
Fig. 8.13.
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1      1      2      2      3
,2 ,1 ,3 ,2

3 ,2 ,   ,3
1      2      3      3

1
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Figure 8.13: Transition diagram of the deterministic suffix automaton from
Example 8.8

This automaton is able to identify the following set of prefixes of strings
from the set S = {baa, aba, bab}:

Pref(S) = {ε, a, b, ba, ab, baa, aba, bab}. 2
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const M = {length of pattern};
MATCHSHIFT = {length of shift when pattern is found};

var TEXT : array [1..N] of char;
I,J : integer;
STATE : TSTATE;
δ : array[1..MAXSTATE,1..MAXSYMBOL] of TSTATE;
F : set of TSTATE;
LFACTOR: integer;
SHIFT: integer;
. . .

begin
LFACTOR := 0;
STATE := q0;
I := 0;
J := M;
while (I ≤ N-M) do

begin
if δ [STATE,TEXT[I+J]] = fail

then
begin

if LFACTOR = M then
begin

output(I + 1);
SHIFT := MATCHSHIFT;

end
else

SHIFT := M - LFACTOR;
LFACTOR := 0;
STATE := q0;
I := I + SHIFT;
J := M;

end;
else

begin
STATE := δ[STATE,TEXT[I + J]];
J := J - 1;
LFACTOR := LFACTOR + 1;

end;
end;

end;

Figure 8.14: MBFM and MBOM algorithms
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d–subset Prefix Repetitions of prefixes

1121123223 a (11, F ), (12, F ), (21, S), (32, G), (23, S)

312233 ba (22, F ), (31, O), (33, O)

31221333 b (13, F ), (22, S), (31, G), (33, G)

3223 ab (23, F ), (32, O)

Table 8.8: Prefix repetition table for the set of reversed patterns
SR = {aab, aba, bab} from Example 8.9

State Longest prefix MGPS

1121123223 a 2

21 ba 2

312233 ba 1

32 ba 1

31221333 b 1

3223 ab 1

33 ab 1

Table 8.9: MGPS table from Example 8.9

The suffix automaton is therefore used for the identification of the longest
prefix of some string from the set of patterns S. As soon as the mismatch
occurs, the automaton is starting to read the text from the position which
is given by the previous position and the shift. This heuristic is called multi
good prefix shift (MGPS ). The length of the shift is given by the distance
of found prefix from the initial state of MBPM automaton limited by lmin.
This is the base for computing MGPS (multi good prefix shift) table. To
construct MGPS table, we construct prefix repetition table.

Example 8.9
Let us have set of patterns S = {baa, aba, bab} (see Example 8.8). The
prefix repetition table is shown in Table 8.8. The MGPS table is shown in
Table 8.9.

Fig. ?? shows the visualisation of the behaviour of MBDM algorithm
using the suffix automaton for set of reversed patterns SR = {aab, aba, bab}.
The arrows (↓) show the position after each shift. In position 5 the pattern
baa is found, in position 7 the pattern aba is found, and in position 8 the
pattern bab is found. 2

8.2.3.2 Reduced multibackward DAWG matching The second
method, looking for prefixes which are suffixes of some elements of the set
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match
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bab

3
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Figure 8.15: Behaviour of the suffix automaton for the reversed set of pat-
terns SR = {baaR, abaR, babR} from Example 8.9

of pattern, is based also on the use of a suffix automaton for the set of re-
versed patterns. Finding prefixes which are also suffixes of some patterns
is done by the backbone of the suffix automaton. It leads to the heuristic
called “reduced multi good prefix shift” (RMGPS ). The problem of RMGPS
shift is that it is not “safe” similarly to RGPS shift (see Section 7.2.3.2).
It means that some occurrences of the pattern can be missed. This is why
this approach cannot be used alone but only in a combination with other
approaches. An example of such combination is the Commentz–Walter al-
gorithm presented in the next Section. Let us show this principle using an
example.

Example 8.10
Let set of patterns be S = {babb, caba} over alphabet A = {a, b, c}. The set
of reversed patterns is SR = {bbab, abac}. Transition diagram of the nonde-
terministic suffix automaton for the set of reversed pattern SR is depicted in
Fig. 8.16. Its transition table is shown in Table 8.10. Transition table of the
equivalent deterministic suffix automaton is shown in Table 8.11. Transition
diagram of this deterministic suffix automaton is shown in Fig. 8.17. State
3132 and transitions which are out of the backbone are drawn by dashed
lines.
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a b c

0 11, 31, 32 21, 12, 22, 42 41

11 21

21 31

31 41

41

12 22

22 32

32 42

42

Table 8.10: Transition table of the nondeterministic suffix automaton from
Example 8.10

a b c

0 113132 21122242 41

113132 2142 41

21122242 3132 22

2142 31

22 32

31 41

3132 42 41

32 42

41

42

Table 8.11: Transition table of the deterministic suffix automaton from Ex-
ample 8.10
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Figure 8.16: Transition diagram of the nondeterministic suffix automaton
from Example 8.10
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Figure 8.17: Transition diagram of the deterministic suffix automaton and
its backbone from Example 8.10
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8.2.4 Commentz–Walter algorithm

Commentz–Walter (CW ) algorithm [CW79] is the classical algorithm de-
voted to the backward pattern matching of a finite set of patterns. It uses:

multi bad character shift (MBCS, see Section 8.2.1),
multi good suffix shift (MGSS, see Section 8.2.2), and
reduced multi good prefix shift (RMGPS, see Section 8.2.3.2).

The basic principle of CW algorithm is based on the selection of the longer
shift from MBCS and MGSS shifts. Let us show the principle of CW algo-
rithm using an example.

Example 8.11
Let the set of patterns be S = {cbaba, bba, abbb} over the alphabet A =
{a, b, c, d} (see Examples 8.4 and 8.6). The MBCS table is shown in Exam-
ple 8.4. The MGSS table is shown in the Table 8.6 (see Example 8.6). The
finite automaton for multibackward pattern matching is depicted in Fig. 8.9.
2

The multi backward searching algorithm (MBPM, see Fig. 8.3) uses the
transition table defining the mapping δ of the finite automaton accepting
the set of reversed patterns from the set SR (see the transition table of the
automaton M2 shown in Table 8.4). The adaptation of the multi backward
searching algorithm (MBPM ) for CW algorithm requires only replacement
of statement

(∗) I := I + 1;
by statement
I := I + min(LMIN, min(RMGPS[I],

max(MBCS[TEXT[I + J ]],MGSS[J ])));

where RMGPS is reduced multi good prefix shift, MBCS is multi bad char-
acter shift and MGSS is multi good suffix shift.

Example 8.12
Let the set of patterns be S = {cbaba, bba, abbb} over the alphabet A =
{a, b, c, d} (see Example 8.11). The behaviour of CW algorithm for the text
T = abdbbacbababbb is visualised in the Fig. 8.18.

8.2.5 Looking for antifactors of a finite set of patterns

The principle based on the looking for antifactors of one string (see Sec-
tion 7.2.5) can be extended for a set of strings. The use of multi antifactor
shift (MAFS ) is described in this section. We will use both factor automa-
ton and factor oracle automaton for a set of patterns in order to compute
MAFS.
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Figure 8.18: Behaviour of MBPM algorithm adapted for CW Algorithm for
the set of reversed patterns SR = {cbabaR, bbaR, abbbR} from Example 8.12

8.2.5.1 Multi backward factor matching We present multi backward
factor matching (MBFM ). Let us show the use of a factor automaton for
looking for antifactors of a set of patterns in the next Example.

Example 8.13
Let set of patterns be S = {abba, cabc} over alphabet A = {a, b, c}. The
set of reversed paterns SR = {abbaR, cabcR} = {abba, cbac}. We construct
the factor automaton for this set of reversed patterns. Transition diagram
of the nondeterministic factor automaton M1 for set of reversed patterns
SR is depicted in Fig. 8.19. Transition table of the nondeterministic factor
automaton M1 for set SR = {abba, cbac} is shown in Table 8.12. Transition
table of the deterministic factor automaton M2 is shown in Table 8.13 and
its transition diagram is depicted in Fig. 8.20.

The factor automaton is used for the identification of the longest factor
of the set of patterns while reading text backwards. As soon as a mismatch
occurs reading symbol z, an antifactor of the set of patterns is recognised.
The set of patterns is then shifted to the right behind symbol z which does
not belong to the factor of the set of patterns. This shift is, however, limited
by lmin which is the length of the shorterst element of the set. If the pattern
is found, then the shift is given by matchshift. This is a parametr of the
pattern matching algorithm (MBFM ), see Fig. 8.21.
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a b c

0 11, 41, 32 21, 31, 22 12, 42

11 21

21 31

31 41

41

12 22

22 32

32 42

42

Table 8.12: Transition table of the nondeterministic factor automaton M1

for set SR = {abba, cbac} from Example 8.13

a b c

0 114132 213122 1242

114132 21 42

21 31

213122 4132 31

31 41

41

4132 42

1242 22

22 32

32 42

42

Table 8.13: Transition table of the deterministic factor automaton M2 for
set SR = {abba, cbac} from Example 8.13
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Figure 8.19: Transition diagram of the nondeterministic factor automaton
M1 for set SR = {abba, cbac} from Example 8.13
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Figure 8.20: Transition diagram of the deterministic factor automaton M2

for set SR = {abba, cbaa} from Example 8.13
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const M = {length of pattern};
MATCHSHIFT = {length of shift when pattern is found};

var TEXT : array [1..N] of char;
I,J : integer;
STATE : TSTATE;
δ : array[1..MAXSTATE,1..MAXSYMBOL] of TSTATE;
F : set of TSTATE;
LFACTOR: integer;
SHIFT: integer;
. . .

begin
LFACTOR := 0;
STATE := q0;
I := 0;
J := M;
while (I ≤ N-M) do

begin
if δ [STATE,TEXT[I+J]] = fail

then
begin

if LFACTOR = M then
begin

output(I + 1);
SHIFT := MATCHSHIFT;

end
else

SHIFT := M - LFACTOR;
LFACTOR := 0;
STATE := q0;
I := I + SHIFT;
J := M;

end;
else

begin
STATE := δ[STATE,TEXT[I + J]];
J := J - 1;
LFACTOR := LFACTOR + 1;

end;
end;

end;

Figure 8.21: MBFM and MBOM algorithms
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Configuration of the MBFM algorithm is a quadruple:
(state,I,J,lfactor).

The initial configuration is (q0, 0, lmin, 0).

Example 8.14
Let us use the factor automaton for the set of patterns SR = {abba, cbac}
from Example 8.13 and show the pattern matching in text:

T =
1 2 3 4 5 6 7 8 9 10 11 12 13 14

c a a b b a a b b a a b c c

MBFM algorithm performs the following sequence of steps:

(0, 0, 4, 0)
b

⊢ (213122, 0, 3, 1)
a

⊢ (4132, 0, 2, 2)shift 2

⊢ (0, 2, 4, 0)
a

⊢ (114132, 2, 3, 1)
b

⊢ (21, 2, 2, 2)
b

⊢ (31, 2, 1, 3)
a

⊢ (41, 2, 0, 4)match, matchshift = 3

⊢ (0, 5, 4, 0)
b

⊢ (213122, 5, 3, 1)
b

⊢ (31, 5, 2, 2)
a

⊢ (41, 5, 1, 3)shift 1

⊢ (0, 6, 4, 0)
a

⊢ (114132, 6, 3, 1)
b

⊢ (21, 6, 2, 2)
b

⊢ (31, 6, 1, 3)
a

⊢ (41, 6, 0, 4)match, matchshift = 3

⊢ (0, 9, 4, 0)
c

⊢ (1242, 9, 3, 1)
b

⊢ (22, 9, 2, 2)
a

⊢ (32, 9, 1, 3)match, matchshift = 3

⊢ (0, 12, 4, 0)

At this point the searching is finished, because the shift is behind the text.

57



8.2.5.2 Multi backward oracle matching The factor oracle automa-
ton for the looking for antifactors in a set of strings can be used as well. The
method using this approach is called also Multi Backward Oracle Matching
(MBOM ). The basic tool for the looking for antifactors of the set of pat-
terns is a factors oracle automaton for the reversed set of patterns. This
automaton is accepting the set of all factors of set of reversed patterns and
moreover some of it subsequences. Let us show the use of a factor oracle
automaton for looking for antifactors in the next example.

Example 8.15
Let set of patterns be S = {abba, cabc} over alphabet A = {a, b, c} as in
Example 8.13. Transition diagram of the nondeterministic factor automaton
for the set SR = {abba, cbac} M1(S

R) is depicted in Fig. 8.19. Deterministic
factor automaton M2(S

R) has transition diagram shown in Fig. 8.20. There
is possible to obtain a factor oracle automaton by merging some states of
the factor automaton. We can use three approaches:

1. The first approach is merging states {213122, 21} and {4132, 32}. The
resulting factor oracle automaton MO1 has transition diagram de-
picted in Fig. 8.22. The language accepted by factor oracle automa-
ton MO1 is L1(Oracle({abba, cbac})) = L(MO1) = Fact({abba, cbac})∪
{aba, abac}.
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Figure 8.22: Transition diagram of factor oracle automaton MO1 for the
set of patterns SR = {abba, cbac} from Example 8.14 obtained by merging
states {213122, 21} and {4132, 32}

2. The second approach is merging states {213122, 22} and {4132, 32}.
The resulting factor oracle automaton MO2 has transition diagram
depicted in Fig. 8.23. The language accepted by factor oracle automa-
ton MO2 is

L2(Oracle({abba, cbac})) = L(MO2) = Fact({abba, cbac})∪{cbb, cbba}.

3. The third approach is merging states {213122, 21, 22} and {4132, 32}.
The resulting factor oracle automaton MO3 has transition diagram de-
picted in Fig. 8.24. The language accepted by factor oracle automaton
MO3 is

58



L3(Oracle({abba, cbac})) = L(MO3) = L(MO1) ∪ L(MO2) =

Fact({abba, cbac}) ∪ {cbb, cbba, aba, abac}. 2
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Figure 8.23: Transition diagram of factor oracle automaton MO2 for the
set of reversed patterns SR = {abba, cbac} from Example 8.14 obtained by
merging states {213122, 22} and {4132, 32}
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Figure 8.24: Transition diagram of factor oracle automaton MO3 for the
set of reversed patterns SR = {abba, cbac} from Example 8.14 obtained by
merging states {213122, 21, 22} and {4132, 32}

Let us remember, that the configuration of MBOM algorithm is a quadruple:
(state, I, J, lfactor).

The initial configuration is
(q0, 0, lmin, 0).

Example 8.16
Let use use the factor oracle automaton for the set of patterns SR =
{abba, cbac} from Example 8.15 and show the pattern matching for the same
text as in Example 8.13.
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MBOM algorithm performs the following sequence of steps using the factor
oracle automaton MO3 having transition diagram depicted in Fig. 8.24.

(0, 0, 4, 0)
b

⊢ (B, 0, 3, 1)
a

⊢ (C, 0, 2, 2)shift 2

⊢ (0, 2, 4, 0)
a

⊢ (114132, 2, 3, 1)
b

⊢ (B, 2, 2, 2)
b

⊢ (31, 2, 1, 3)
a

⊢ (41, 2, 0, 4)match, matchshift = 3

⊢ (0, 5, 4, 0)
b

⊢ (B, 5, 3, 1)
b

⊢ (31, 5, 2, 2)
a

⊢ (41, 5, 1, 3)shift 1

⊢ (0, 6, 4, 0)
a

⊢ (114132, 6, 3, 1)
b

⊢ (B, 6, 2, 2)
b

⊢ (31, 6, 1, 3)
a

⊢ (41, 6, 0, 4)match, matchshift = 3

⊢ (0, 9, 4, 0)
C

⊢ (1242, 9, 3, 1)
b

⊢ (B, 9, 2, 2)
a

⊢ (C, 9, 1, 3)shift 2

⊢ (0, 11, 4, 0)

At this point the searching is finished, because the shift is behind the text.
2
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